在github上搜索代码Auto Gamma Correction,找到一个比较古老的代码,详见:https://github.com/PedramBabakhani/Automatic-Gamma-Correction,配套的代码使用VHDL语言写的,看了半天一个for循环没有,是在看不懂,幸好里面有篇算法对应的论文下载,论文名字叫《ASIC implementation of automatic gamma correction based on average of brightness 》,下载看了下,大概搞明白了他的大概意思。

  文章的核心思想很简单,就是他假定一幅合理的图像应该所有像素的平均值应该是0.5左右(归一化后的),所以那么自动伽马校正的伽马值就要使得目标图像向这个目标前进。

  假定X是图像的平均值,那么自动伽马需符合下述要求:

      

  一步一步的往下推导,有:

        -----》       --------》

  就是这么简单哪,如果写个代码也就是几分钟的事情。

int IM_AutoGammaCorrection(unsigned char *Src, unsigned char *Dest, int Width, int Height, int Stride)
{
int Channel = Stride / Width;
if ((Src == NULL) || (Dest == NULL)) return IM_STATUS_NULLREFRENCE;
if ((Width <= 0) || (Height <= 0)) return IM_STATUS_INVALIDPARAMETER;
if ((Channel != 1) && (Channel != 3) && (Channel != 4)) return IM_STATUS_NOTSUPPORTED;
int AvgB, AvgG, AvgR, AvgA;
int Status = IM_GetAverageValue(Src, Width, Height, Stride, AvgB, AvgG, AvgR, AvgA);
if (Status != IM_STATUS_OK) return Status;
if (Channel == 1)
{
float Gamma = -0.3 / (log10(AvgB / 256.0f));
unsigned char Table[256];
for (int Y = 0; Y < 256; Y++) // 另外一种方式是:pow(Y / 255.0, 1.0 / Gamma)
{
Table[Y] = IM_ClampToByte((int)(pow(Y / 255.0f, Gamma) * 255.0f));
}
return IM_Curve(Src, Dest, Width, Height, Stride, Table, Table, Table);
}
else
{
float GammaB = -0.3 / (log10(AvgB / 256.0f));
float GammaG = -0.3 / (log10(AvgG / 256.0f));
float GammaR = -0.3 / (log10(AvgR / 256.0f)); unsigned char TableB[256], TableG[256], TableR[256];
for (int Y = 0; Y < 256; Y++) // 另外一种方式是:pow(Y / 255.0, 1.0 / Gamma)
{
TableB[Y] = IM_ClampToByte((int)(pow(Y / 255.0f, GammaB) * 255.0f));
TableG[Y] = IM_ClampToByte((int)(pow(Y / 255.0f, GammaG) * 255.0f));
TableR[Y] = IM_ClampToByte((int)(pow(Y / 255.0f, GammaR) * 255.0f));
}
return IM_Curve(Src, Dest, Width, Height, Stride, TableB, TableG, TableR);
}
}

  效果似乎还是很不错的。

    

  对于正常的图像,基本上没有啥变化,这也是必须要有的特性。

       

  论文里提出了另外一种更适合于硬件实现的方式。

  他把图像分成很多个16*16的小块,比如N*M个(文章中固定死了,也是16*16个),然后对16*16的小块,每次提取对应位置的一个像素,共计N*M个像素,计算这N*M像素的平均值,然后依据这个平均值计算出伽马值,这样就能计算出16*16个Gamma值,这些Gamma值肯定不会是完全相同的,文章中也统计了他们的差异大小,最后用这个256个gamma的平均值作为最后的正副图像的平均值。

  这代码写的有点狗屎 ......

  注意上面的取样是全部平均取样,不是某一个块集中取样。

  这样写的结果和全图取平均还是有一定区别的,不过效果基本上差不多。

  整个过程就这么简单,不过对于彩色图像,如果直接分通道实现,似乎会出现一定的偏色现象,我想这个不应该是Gamma调整该出现的作用,应该予以消除,如下所示:

   

  解决方法有把三通道求得的Gamma值再求平均值,作为每个通道的Gamma值,也可以对亮度通道做Gamma,然后在返回到RGB空间等等。

   

  如上所示,基本没有这个现象。

  当然,这种全局的Gamma校正还是有很多问题,比如容易出现块状,容易增强噪音等等,需要和某些局部算法结合在一起来实现更好的结果。

本文Demo下载地址:  http://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar,见其中的Adjust-> Auto Gamma Correction菜单。

【短道速滑二】古老的基于亮度平均值的自动Gamma校正算法。的更多相关文章

  1. SSE图像算法优化系列二十四: 基于形态学的图像后期抗锯齿算法--MLAA优化研究。

    偶尔看到这样的一个算法,觉得还是蛮有意思的,花了将近10天多的时间研究了下相关代码. 以下为百度的结果:MLAA全称Morphological Antialiasing,意为形态抗锯齿是AMD推出的完 ...

  2. 【计算机视觉】基于局部二值相似性模式(LBSP)的运动目标检测算法

    基于局部二值相似性模式(LBSP)的运动目标检测算法 kezunhai@gmail.com http://blog.csdn.net/kezunhai 本文根据论文:Improving backgro ...

  3. NX二次开发-基于MFC界面的NX对Excel读写操作(OLE方式(COM组件))

    NX二次开发API里没有对EXCAL读写操作的相关函数,市面上有很多种方法去实现,比如UFUN调KF,ODBC,OLE(COM组件)等等.这里我是用的OLE(COM组件)方式去做的,这种在VC上创建的 ...

  4. NX二次开发-基于NX开发向导模板的NX对Excel读写操作(OLE方式(COM组件))

    在看这个博客前,请读者先去完整看完:NX二次开发-基于MFC界面的NX对Excel读写操作(OLE方式(COM组件))https://ufun-nxopen.blog.csdn.net/article ...

  5. (二)基于商品属性的相似商品推荐算法——Flink SQL实时计算实现商品的隐式评分

    系列随笔: (总览)基于商品属性的相似商品推荐算法 (一)基于商品属性的相似商品推荐算法--整体框架及处理流程 (二)基于商品属性的相似商品推荐算法--Flink SQL实时计算实现商品的隐式评分 ( ...

  6. 基于Matlab的MMSE的语音增强算法的研究

    本课题隶属于学校的创新性课题研究项目.2012年就已经做完了,今天一并拿来发表.   目录: --基于谱减法的语音信号增强算法..................................... ...

  7. 基于OpenSLL的RSA加密应用(非算法)

    基于OpenSLL的RSA加密应用(非算法) iOS开发中的小伙伴应该是经常用der和p12进行加密解密,而且在通常加密不止一种加密算法,还可以加点儿盐吧~本文章主要阐述的是在iOS中基于openSL ...

  8. 基于模糊Choquet积分的目标检测算法

    本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我 ...

  9. 基于OpenSSL的RSA加密应用(非算法)

    基于OpenSSL的RSA加密应用(非算法) iOS开发中的小伙伴应该是经常用der和p12进行加密解密,而且在通常加密不止一种加密算法,还可以加点儿盐吧~本文章主要阐述的是在iOS中基于openSL ...

  10. 基于搜索的贝叶斯网络结构学习算法-K2

    基于搜索的贝叶斯网络结构学习算法-K2 2018-04-05 19:34:18 ItsBlue 阅读数 3172更多 分类专栏: 贝叶斯网络 网络结构学习   版权声明:本文为博主原创文章,遵循CC ...

随机推荐

  1. [SWPUCTF 2021 新生赛]非常简单的逻辑题

    一道简单的代码逆向,根据提供的py代码写出逆向代码,没怎么做过这种题开始没什么思路,原来直接暴力就好 直接写出暴力代码

  2. 深入理解 BigBird 的块稀疏注意力

    引言 基于 transformer 的模型已被证明对很多 NLP 任务都非常有用.然而,\(O(n^2)\) 的时间和内存复杂度 (其中 \(n\) 是序列长度) 使得在长序列 (\(n > 5 ...

  3. 快速下载vscode、git

    在官网下载vscode太慢,解决方式: http://vscode.cdn.azure.cn/stable/ea3859d4ba2f3e577a159bc91e3074c5d85c0523/VSCod ...

  4. 【Javaweb】java中接口(interface)怎么用

    首先我们先了解什么是接口(interface) 实际情况中,又是我们必须从几个类中派生出一个子类,继承他们所有的属性和方法.但是,JAVA中是不支持多重继承的,那么为了满足这一目的,就有了接口,就可以 ...

  5. Socket.D 网络应用协议,v2.1.6 发布

    有用户说,"Socket.D 之于 Socket,尤如 Vue 之于 Js.Mvc 之于 Http" 与其它协议的简单对比 对比项目 socket.d http websocket ...

  6. [GDOIpj221D] 小学生计数题

    第四题 小学生计数题 提交文件: counting.cpp 输入文件: counting.in 输出文件: counting.out 时间空间限制: 1 秒, 256 MB 作为 GDOI 的组题人, ...

  7. 小程序优化:第三方SDK过大解决方案

    [前言] 小程序开发中,有时会遇到下面这种情况,项目目录中存放过大的js包,会被警告影响手机端性能,同时让开发编译启动变得很慢.慢是其次,单是影响性能这一点,就需要解决一下. [云资源] 将项目js包 ...

  8. python tkinter 使用(十)

    python tkinter 使用(十) #!/usr/bin/python3 # -*- coding: UTF-8 -*- """ @Author: zh @Time ...

  9. Vue学习笔记-指令

  10. 子类Dog根据自己的需要,重写了Animal方法

    子类Dog根据自己的需要,重写了Animal方法 package com.guoba.method; class Animal{ public void move(){ System.out.prin ...