定义:最大权闭合图:是有向图的一个点集,且该点集的所有出边都指向该集合。即闭合图内任意点的集合也在改闭合图内,给每个点分配一个点权值Pu,最大权闭合图就是使闭合图的点权之和最大。

最小割建边方式:源点s和正权的点连接,容量是Pu,负权的点和汇点t相连,容量是-Pu,之间的边权值inf,过一遍最大流ans,正权之和sum-ans就是最大权闭合图的值。

例题:HDU3996

题意:给出n个金矿地区,每个金矿地区有mi个矿坑,挖取第i个地区的第j个矿坑需要花费cost[i][j],可以获得利益value[i][j],但是有些限制条件,就是想要挖取第i个地区的第j个矿坑之前必须把第ii个地区的第jj个矿坑挖掉.问最大获益是多少?

分析:共用n*Mi个矿坑,每个点的权值是value[i][j]-cost[i][j],建边从第i,j指向ii,jj,表示要选取i,j一定会选取ii,jj。建边后跑一遍Dinic即可。

#include"stdio.h"
#include"string.h"
#include"stdlib.h"
#include"algorithm"
#include"math.h"
#include"vector"
#include"queue"
#define M 3009
#define inf 1000000000000000LL
#define eps 1e-7
#define pps 1e-18
#define PI acos(-1.0)
#define LL __int64
using namespace std;
struct node
{
int u,v,next;
LL w;
}edge[M*300];
int t,head[M],dis[M];
int lay[M],num[111][30],work[M];
LL p[M],cost[M];
LL min(LL a,LL b)
{
return a<b?a:b;
}
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,LL w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++; edge[t].u=v;
edge[t].v=u;
edge[t].w=0;
edge[t].next=head[v];
head[v]=t++;
}
int bfs(int S,int T)
{
queue<int>q;
memset(dis,-1,sizeof(dis));
q.push(S);
dis[S]=0;
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].w&&dis[v]==-1)
{
dis[v]=dis[u]+1;
if(v==T)
return 1;
q.push(v);
}
}
}
return 0;
}
LL dfs(int cur,LL a,int T)
{
if(cur==T)return a;
for(int &i=work[cur];~i;i=edge[i].next)
{
int v=edge[i].v;
if(edge[i].w&&dis[v]==dis[cur]+1)
{
LL tt=dfs(v,min(a,edge[i].w),T);
if(tt)
{
edge[i].w-=tt;
edge[i^1].w+=tt;
return tt;
}
}
}
return 0;
}
LL Dinic(int S,int T)
{
LL ans=0;
while(bfs(S,T))
{
memcpy(work,head,sizeof(head));
while(LL tt=dfs(S,inf,T))
ans+=tt;
}
return ans;
}
struct st
{
int u,v;
st(int uu,int vv)
{
u=uu;
v=vv;
}
};
vector<st>s[M];
int main()
{
int Case,n,i,j,k,K,ii,jj,kk=1;
scanf("%d",&Case);
while(Case--)
{
scanf("%d",&n);
for(i=1;i<M;i++)
s[i].clear();
int cnt=0;
init();
for(i=1;i<=n;i++)
{
scanf("%d",&lay[i]);
for(j=1;j<=lay[i];j++)
{
num[i][j]=++cnt;
scanf("%I64d%I64d%d",&cost[cnt],&p[cnt],&K);
for(k=1;k<=K;k++)
{
scanf("%d%d",&ii,&jj);
s[cnt].push_back(st(ii,jj));
}
}
}
init();
for(i=1;i<=n;i++)
{
for(j=1;j<=lay[i];j++)
{
for(k=0;k<(int)s[num[i][j]].size();k++)
{
int ii=s[num[i][j]][k].u;
int jj=s[num[i][j]][k].v;
add(num[i][j],num[ii][jj],inf);
}
}
}
LL sum=0;
for(i=1;i<=cnt;i++)
{
if(p[i]-cost[i]>0)
{
add(0,i,p[i]-cost[i]);
sum+=p[i]-cost[i];
}
else if(p[i]-cost[i]<0)
add(i,cnt+1,cost[i]-p[i]);
}
LL ans=Dinic(0,cnt+1);
printf("Case #%d: ",kk++);
printf("%d\n",sum-ans);
}
return 0;
}

最大权闭合图hdu3996的更多相关文章

  1. hdu 3061 hdu 3996 最大权闭合图 最后一斩

    hdu 3061 Battle :一看就是明显的最大权闭合图了,水提......SB题也不说边数多少....因为开始时候数组开小了,WA....后来一气之下,开到100W,A了.. hdu3996. ...

  2. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  3. 【TYVJ】1338 QQ农场(最大流+最大权闭合图)

    http://tyvj.cn/Problem_Show.aspx?id=1338 时间才排到rank7,还不快啊囧.isap我常数都写得那么小了... 最大权闭合图看我另一篇博文吧 此题很明显的模型. ...

  4. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

  5. 最大权闭合图最大获益(把边抽象为点)HDU3879

    题意:给出一个无向图,每个点都有点权值代表花费,每条边都有利益值,代表形成这条边就可以获得e[i]的利益,问选择那些点可以获得最大利益是多少? 分析:把边抽象成点,s与该点建边,容量是利益值,每个点与 ...

  6. BZOJ 1565 植物大战僵尸(最大权闭合图)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1565 题意:植物大战僵尸,一个n*m的格子,每 个格子里有一个植物,每个植物有两个属性: ...

  7. hdu 3061 Battle 最大权闭合图

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3061 由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅.而他上任的第一天,就面对了一场极其困难的 ...

  8. hdu 3879 Base Station 最大权闭合图

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 A famous mobile communication company is plannin ...

  9. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

随机推荐

  1. Delphi中如何实现滚动文字

    1.先添加一个Timer控件,其Interval属性设置为50. 2.再添加一个Label控件,Name为Label1. 3.然后在Timer的OnTimer事件添加如下代码: unit Unit13 ...

  2. 【php学习】数组操作

    1.json字符串和数组之间的转换 json_decode($jsonStr)      json字符串解码为php变量,若第二个参数默认为false,返回一个对象:若第二个参数设置true,则返回一 ...

  3. Oracle EBS 术语解释

    SRS:是否在标准窗口进行提交请求 fnd_flex_value_sets.validation_type含义如下: D:从属I:独立N:无P:对U:特定F:表X:可转换独立Y:可转换从属

  4. (转)js一道比较考验的题目

    转载下别人曾经出过的一道面试题,此题是他出的一套前端面试题中的最后一题,用来考核面试者的JavaScript的综合能力,很可惜到目前为止的将近两年中,几乎没有人能够完全答对,并非多难只是因为大多面试者 ...

  5. ubuntu navicat

    接下来是从网络上下载Chrome对应是版本的包,小编的系统是64位的,因此,执行:wget https://dl.google.com/linux/direct/google-chrome-stabl ...

  6. Cloudera CDH 、Impala本地通过Parcel安装配置详解及什么是Parcel

    本文引用自:Cloudera CDH .Impala本地通过Parcel安装配置详解及什么是Parcelhttp://www.aboutyun.com/forum.php?mod=viewthread ...

  7. There is no tracking information for the current branch

    There is no tracking information for the current branch. Please specify which branch you want to mer ...

  8. Architecture of a Highly Scalable NIO-Based Server

    一. thread-per-connection The thread-per-connection approach uses an exclusive worker thread for each ...

  9. Makefile使用总结

    1. Makefile 简介 Makefile 是和 make 命令一起配合使用的. 很多大型项目的编译都是通过 Makefile 来组织的, 如果没有 Makefile, 那很多项目中各种库和代码之 ...

  10. 让Dreamweaver支持less

    编辑->首选参数->文件类型/编辑器->在代码视图中打开->添加" .less"后缀