2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 3347  Solved: 1479
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

湖北省队互测

Solution

首先,所求的是$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( i,j \right )= p \right ]$

那么转化一下就可以得到$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( \frac{i}{p},\frac{j}{p} \right )= 1 \right ]$

那么我们定义$f\left [ i \right ]$表示1~i中满足$gcd\left ( x,y \right )= 1$的个数

那么很显然可以得到 $f\left [ i \right ]= 1+2*\sum_{j=1}^{i}\varphi \left ( j \right )$

上述式子很好想,考虑$\varphi$的定义,以及$gcd\left ( a,b \right )= gcd\left ( b,a \right )$再考虑$\left ( 1,1 \right )$的情况

所以很显然,结果就是$\sum_{i=1}^{cnt}f\left [ \frac{n}{prime[i]]} \right ]$

值得注意的是,不要计算重复,具体的看代码即可

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 10000010
int prime[maxn],cnt;long long phi[maxn],f[maxn];
bool flag[maxn];
void prework(int n)
{
phi[]=; flag[]=; f[]=;
for (int i=; i<=n; i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=; j<=cnt&&i*prime[j]<=n; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j]))
{phi[i*prime[j]]=phi[i]*prime[j];break;}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for (int i=; i<=n; i++) phi[i]+=phi[i-];
for (int i=; i<=n; i++) f[i]=+*phi[i];
}
void work(int n)
{
long long ans=;
for (int i=; i<=cnt; i++)
if (n/prime[i]) ans+=f[n/prime[i]];
printf("%lld\n",ans);
}
int main()
{
int n;
scanf("%d",&n);
prework(n+); work(n);
return ;
}

简单数论!一点都不慌

【BZOJ-2818】Gcd 线性筛的更多相关文章

  1. bzoj 2818 gcd 线性欧拉函数

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...

  2. BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)

    标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...

  3. BZOJ 2818 GCD 素数筛+欧拉函数+前缀和

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...

  4. BZOJ 2818 Gcd 线性欧拉

    题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...

  5. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  6. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  7. BZOJ 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4443  Solved: 1960[Submit][Status][Discuss ...

  8. BZOJ 2818 Gcd(欧拉函数+质数筛选)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 9108  Solved: 4066 [Submit][Status][Discu ...

  9. BZOJ 2190 仪仗队(线性筛欧拉函数)

    简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...

  10. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

随机推荐

  1. POJ 1182 食物链 (三态种类并查集)

    这题首先不说怎么做,首先要提醒的是..:一定不要做成多组输入,,我WA了一个晚上加上午,,反正我是尝到苦头了,,请诸君千万莫走这条弯路..切记 这题是上一题(Find them and Catch t ...

  2. 用uGUI开发自定义Toggle Slider控件

    一.前言 写完<Unity4.6新UI系统初探>后,我模仿手机上的UI分别用uGui和NGUI做了一个仅用作演示的ToggleSlider,我认为这个小小的控件已能体现自定义控件的开发过程 ...

  3. Linux系统批量化安装部署之Cobbler

    说明: Cobbler服务器系统:CentOS 5.10 64位 IP地址:192.168.21.128 需要安装部署的Linux系统: eth0(第一块网卡,用于外网)IP地址段:192.168.2 ...

  4. bootstrap和jquery mobile的对比

    最近一直在研究bootstrap这东西,确实是个好的框架,但是诸多优势背后也隐藏着一些不好的地方,对此,我把它和另一套响应式框架jquery mobile做了一下对比,我的总结如下:    1.boo ...

  5. usb驱动开发10之usb_device_match

    在第五节我们说过会专门分析函数usb_device_match,以体现模型的重要性.同时,我们还是要守信用的. 再贴一遍代码,看代码就要不厌其烦. static int usb_device_matc ...

  6. 北京联想招聘-IOS高级 加入qq 群:220486180 或者直接在此 留言咨询

    ios 高级开发 Job ID #: 47980 Position Title: 高级iOS development engineer Location: CHN-Beijing Functional ...

  7. matlab 中的textscan

    textread 与textscan的区别  textscan更适合读入大文件: textscan可以从文件的任何位置开始读入,而textread 只能从文件开头开始读入: textscan也可以从上 ...

  8. 客户端禁用cookies后session是否还起效果

    设置session和cookies的代码(webform1.aspx) if (txtName.Text == "wlzcool") { Session["uid&quo ...

  9. c#中的var优缺点和适用场景

    var是c# 3.0新加的特性,叫做隐式类型局部变量,大家都知道c#其实是一种强类型的语言,为什么会引入匿名类型呢? 我猜测是因为linq的原因吧,因为感觉var在linq中被大量使用.下面说下var ...

  10. [MCSM] 蒙特卡罗统计方法

    起因 最开始的时候,写多了LDPCC误码率的仿真,心中便越来越有了疑惑.误码率仿真,多为Monte Carlo仿真,其原理是什么,仿真结果是否可靠,可靠程度是多少,如何衡量其可靠性这些问题我都很不清楚 ...