2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 3347  Solved: 1479
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

湖北省队互测

Solution

首先,所求的是$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( i,j \right )= p \right ]$

那么转化一下就可以得到$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( \frac{i}{p},\frac{j}{p} \right )= 1 \right ]$

那么我们定义$f\left [ i \right ]$表示1~i中满足$gcd\left ( x,y \right )= 1$的个数

那么很显然可以得到 $f\left [ i \right ]= 1+2*\sum_{j=1}^{i}\varphi \left ( j \right )$

上述式子很好想,考虑$\varphi$的定义,以及$gcd\left ( a,b \right )= gcd\left ( b,a \right )$再考虑$\left ( 1,1 \right )$的情况

所以很显然,结果就是$\sum_{i=1}^{cnt}f\left [ \frac{n}{prime[i]]} \right ]$

值得注意的是,不要计算重复,具体的看代码即可

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 10000010
int prime[maxn],cnt;long long phi[maxn],f[maxn];
bool flag[maxn];
void prework(int n)
{
phi[]=; flag[]=; f[]=;
for (int i=; i<=n; i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=; j<=cnt&&i*prime[j]<=n; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j]))
{phi[i*prime[j]]=phi[i]*prime[j];break;}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for (int i=; i<=n; i++) phi[i]+=phi[i-];
for (int i=; i<=n; i++) f[i]=+*phi[i];
}
void work(int n)
{
long long ans=;
for (int i=; i<=cnt; i++)
if (n/prime[i]) ans+=f[n/prime[i]];
printf("%lld\n",ans);
}
int main()
{
int n;
scanf("%d",&n);
prework(n+); work(n);
return ;
}

简单数论!一点都不慌

【BZOJ-2818】Gcd 线性筛的更多相关文章

  1. bzoj 2818 gcd 线性欧拉函数

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...

  2. BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)

    标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...

  3. BZOJ 2818 GCD 素数筛+欧拉函数+前缀和

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...

  4. BZOJ 2818 Gcd 线性欧拉

    题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...

  5. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  6. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  7. BZOJ 2818: Gcd

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4443  Solved: 1960[Submit][Status][Discuss ...

  8. BZOJ 2818 Gcd(欧拉函数+质数筛选)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 9108  Solved: 4066 [Submit][Status][Discu ...

  9. BZOJ 2190 仪仗队(线性筛欧拉函数)

    简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...

  10. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

随机推荐

  1. POJ 1754 Splay

    单点更新,区间最值,用来练Splay刚好. 将位置作为排序的规则,利用Splay不会改变顺序的特点,求某一段区间[l,r]的最值时,将l-1伸展到根,将r+1伸展到l-1的右子树,这时r+1的左子树就 ...

  2. Java虚拟机详解03----常用JVM配置参数

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  3. Cg关键字(keywords)

    保留标识符 除了下面列出的,任何以两个的下划线作为前缀(例如,__ newType)的标识符被保留. 注意,矩阵(matrix)和向量类型(vector types)(如half2x3或float4) ...

  4. NGUI学习笔记汇总

    NGUI学习笔记汇总,适用于NGUI2.x,NGUI3.x 一.NGUI的直接用法 1. Attach a Collider:表示为NGUI的某些物体添加碰撞器,如果界面是用NGUI做的,只能这样添加 ...

  5. JMeter学习(三十二)属性和变量

    一.Jmeter中的属性: 1.JMeter属性统一定义在jmeter.properties文件中,我们可以在该文件中添加自定义的属性 2.JMeter属性在测试脚本的任何地方都是可见的(全局),通常 ...

  6. PCTF-2016-WEB

    Pctf ** web100 PORT51**  开始看到这个真的无法下手,想过用python–socket编程或者scapy发包.自己觉得是可以的,但是没有去试,后面看一大神writeup,知道: ...

  7. Converting a Polygon ZM shape file to a regular Shape Polygon

    from:http://blog.csdn.net/qb371/article/details/8102109 Locate the following tool - ArcToolbox > ...

  8. Javascript 中的 in, hasOwnProperty, delete, for/in

    in 运算符 判断对象是否拥有某一属性只要对象拥有该属性,就会返回true,否则false var point = { x:1, y:1 };alert( 'x' in point );  //tru ...

  9. JS的Document属性和方法

    Attributes 存储节点的属性列表(只读)childNodes 存储节点的子节点列表(只读)dataType 返回此节点的数据类型Definition 以DTD或XML模式给出的节点的定义(只读 ...

  10. Web API 安全问题

    目录 Web API 安全概览 安全隐患 1. 注入(Injection) 2. 无效认证和Session管理方式(Broken Authentication and Session Manageme ...