【BZOJ-2818】Gcd 线性筛
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 3347 Solved: 1479
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
Solution
首先,所求的是$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( i,j \right )= p \right ]$
那么转化一下就可以得到$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( \frac{i}{p},\frac{j}{p} \right )= 1 \right ]$
那么我们定义$f\left [ i \right ]$表示1~i中满足$gcd\left ( x,y \right )= 1$的个数
那么很显然可以得到 $f\left [ i \right ]= 1+2*\sum_{j=1}^{i}\varphi \left ( j \right )$
上述式子很好想,考虑$\varphi$的定义,以及$gcd\left ( a,b \right )= gcd\left ( b,a \right )$再考虑$\left ( 1,1 \right )$的情况
所以很显然,结果就是$\sum_{i=1}^{cnt}f\left [ \frac{n}{prime[i]]} \right ]$
值得注意的是,不要计算重复,具体的看代码即可
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 10000010
int prime[maxn],cnt;long long phi[maxn],f[maxn];
bool flag[maxn];
void prework(int n)
{
phi[]=; flag[]=; f[]=;
for (int i=; i<=n; i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=; j<=cnt&&i*prime[j]<=n; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j]))
{phi[i*prime[j]]=phi[i]*prime[j];break;}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for (int i=; i<=n; i++) phi[i]+=phi[i-];
for (int i=; i<=n; i++) f[i]=+*phi[i];
}
void work(int n)
{
long long ans=;
for (int i=; i<=cnt; i++)
if (n/prime[i]) ans+=f[n/prime[i]];
printf("%lld\n",ans);
}
int main()
{
int n;
scanf("%d",&n);
prework(n+); work(n);
return ;
}
简单数论!一点都不慌
【BZOJ-2818】Gcd 线性筛的更多相关文章
- bzoj 2818 gcd 线性欧拉函数
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...
- BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)
标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...
- BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...
- BZOJ 2818 Gcd 线性欧拉
题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- BZOJ 2818: Gcd
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4443 Solved: 1960[Submit][Status][Discuss ...
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
随机推荐
- 怪物彈珠Monster Strike 攻略
火>水>木>光>暗 1.每天的曜日素材本,周一暗光,周二火,周参水,周四木,周五光乌龟,都是可以打整天的 2.另外补充,升经验用暗乌龟,切忌切记要塞给他随便一只烂宠升等,再吃掉 ...
- ref out 方法参数
ref out 相似 ref和out两个关键字的作用大致相同,但是有一些微妙但是重要的区别. 两者的行为相似到连编译器都认为这两者不能被重载:public void SampleMethod(out ...
- 我的Unity学习路线
前言 上班的时间内都很忙在做项目,休息时间里闲下来了,却觉得没什么事做不自在.难道真是苦逼的命不会享受? 想了一下这一段时间以来的过程:先是重新看了一遍Unity的基础部分,然后买了<3D数学基 ...
- java 15 -3 集合的遍历的练习
练习:用集合存储5个动物对象,并把动物对象进行遍历. 分析: A:创建动物类 a:无参构造方法 b:有参构造方法 c:get.set方法 B:创建集合对象 a:Collection animal = ...
- Android使用的Eclipse NDK开发较详细一篇文章
转自: http://www.cnblogs.com/zdz8207/archive/2012/11/27/android-ndk-install.html
- 开坑,Unix环境高级编程,转行之路又得缓缓了
不要问我基础,我用了近6年的Linux系统,最早的版本可以追溯到Ubuntu 8.04,常用的命令 VIM基本上是没压力,遇到问题google 配置环境变量 网络环境也不在话下, C语法基本熟练,过去 ...
- center
center标签对其包围的文本进行水平居中处理
- scanf和cin的差异
scanf和cin的差异 引例:http://www.cnblogs.com/shenben/p/5516996.html 大家都知道,在C++中有两种输入.输出方式—scanf和cin,但是,它们之 ...
- sqlSQL2008如何创建定时作业(代理服务)(转)
SQL2008如何创建定时作业?此方法也适应于Sql Server2005数据库,有兴趣的可以来看下! 1.打开[SQL Server Management Studio],在[对象资源管理器]列表中 ...
- Linux 进程与线程二(等待--分离--取消线程)
int pthread_join(pthread_t thr,void **thr_return); pthread_join函数用于挂起当前线程,直至th指定的线程终止为止. 如果另一个线程返回值不 ...