【BZOJ-2818】Gcd 线性筛
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 3347 Solved: 1479
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
Solution
首先,所求的是$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( i,j \right )= p \right ]$
那么转化一下就可以得到$\sum_{i=1}^{N}\sum_{j=1}^{N}\left [ gcd\left ( \frac{i}{p},\frac{j}{p} \right )= 1 \right ]$
那么我们定义$f\left [ i \right ]$表示1~i中满足$gcd\left ( x,y \right )= 1$的个数
那么很显然可以得到 $f\left [ i \right ]= 1+2*\sum_{j=1}^{i}\varphi \left ( j \right )$
上述式子很好想,考虑$\varphi$的定义,以及$gcd\left ( a,b \right )= gcd\left ( b,a \right )$再考虑$\left ( 1,1 \right )$的情况
所以很显然,结果就是$\sum_{i=1}^{cnt}f\left [ \frac{n}{prime[i]]} \right ]$
值得注意的是,不要计算重复,具体的看代码即可
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 10000010
int prime[maxn],cnt;long long phi[maxn],f[maxn];
bool flag[maxn];
void prework(int n)
{
phi[]=; flag[]=; f[]=;
for (int i=; i<=n; i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=; j<=cnt&&i*prime[j]<=n; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j]))
{phi[i*prime[j]]=phi[i]*prime[j];break;}
else
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
for (int i=; i<=n; i++) phi[i]+=phi[i-];
for (int i=; i<=n; i++) f[i]=+*phi[i];
}
void work(int n)
{
long long ans=;
for (int i=; i<=cnt; i++)
if (n/prime[i]) ans+=f[n/prime[i]];
printf("%lld\n",ans);
}
int main()
{
int n;
scanf("%d",&n);
prework(n+); work(n);
return ;
}
简单数论!一点都不慌
【BZOJ-2818】Gcd 线性筛的更多相关文章
- bzoj 2818 gcd 线性欧拉函数
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1< ...
- BZOJ 2818 Gcd 线性欧拉筛(Eratosthenes银幕)
标题效果:定整N(N <= 1e7),乞讨1<=x,y<=N和Gcd(x,y)素数的数(x,y)有多少.. 思考:推,. 建立gcd(x,y) = p,然后,x / p与y / p互 ...
- BZOJ 2818 GCD 素数筛+欧拉函数+前缀和
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对( ...
- BZOJ 2818 Gcd 线性欧拉
题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
- BZOJ 2818: Gcd
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4443 Solved: 1960[Submit][Status][Discuss ...
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- BZOJ 2190 仪仗队(线性筛欧拉函数)
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # in ...
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
随机推荐
- POJ 1754 Splay
单点更新,区间最值,用来练Splay刚好. 将位置作为排序的规则,利用Splay不会改变顺序的特点,求某一段区间[l,r]的最值时,将l-1伸展到根,将r+1伸展到l-1的右子树,这时r+1的左子树就 ...
- Java虚拟机详解03----常用JVM配置参数
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- Cg关键字(keywords)
保留标识符 除了下面列出的,任何以两个的下划线作为前缀(例如,__ newType)的标识符被保留. 注意,矩阵(matrix)和向量类型(vector types)(如half2x3或float4) ...
- NGUI学习笔记汇总
NGUI学习笔记汇总,适用于NGUI2.x,NGUI3.x 一.NGUI的直接用法 1. Attach a Collider:表示为NGUI的某些物体添加碰撞器,如果界面是用NGUI做的,只能这样添加 ...
- JMeter学习(三十二)属性和变量
一.Jmeter中的属性: 1.JMeter属性统一定义在jmeter.properties文件中,我们可以在该文件中添加自定义的属性 2.JMeter属性在测试脚本的任何地方都是可见的(全局),通常 ...
- PCTF-2016-WEB
Pctf ** web100 PORT51** 开始看到这个真的无法下手,想过用python–socket编程或者scapy发包.自己觉得是可以的,但是没有去试,后面看一大神writeup,知道: ...
- Converting a Polygon ZM shape file to a regular Shape Polygon
from:http://blog.csdn.net/qb371/article/details/8102109 Locate the following tool - ArcToolbox > ...
- Javascript 中的 in, hasOwnProperty, delete, for/in
in 运算符 判断对象是否拥有某一属性只要对象拥有该属性,就会返回true,否则false var point = { x:1, y:1 };alert( 'x' in point ); //tru ...
- JS的Document属性和方法
Attributes 存储节点的属性列表(只读)childNodes 存储节点的子节点列表(只读)dataType 返回此节点的数据类型Definition 以DTD或XML模式给出的节点的定义(只读 ...
- Web API 安全问题
目录 Web API 安全概览 安全隐患 1. 注入(Injection) 2. 无效认证和Session管理方式(Broken Authentication and Session Manageme ...