The Doors

Time Limit: 1000 MS Memory Limit: 10000 KB

64-bit integer IO format: %I64d , %I64u   Java class name: Main

[Submit] [Status] [Discuss]

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.
2  4 2 7 8 9  7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <cmath> using namespace std;
#define maxx 100
#define INF 10000000 struct Node
{
double x;
double y;
} p[maxx]; ///每扇门的终点 起点 和门的两个端点的平面坐标 struct EDGE
{
int u;
int v;
} Edge[maxx*maxx]; ///存构造的边 因为之前是孤立的点 int n; ///n个墙
double wX[]; ///输入每堵墙的横坐标
double py[][]; ///每堵墙横坐标对应的纵坐标 0 1 2 3 double g[maxx][maxx]; ///存邻接矩阵 配合dis[]的
double dis[maxx]; ///beg到其他点的最短距离 int Psize; ///边的数量
int Esize; ///点的数量 double Dis(Node a,Node b) ///计算亮点之间的距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double cross(double x1,double y1,double x2,double y2,double x3,double y3) ///判断(x3,y3)与(x1,y1)(x2,y2)是否交叉
{
return (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
} bool IsOk(Node a,Node b) ///判断两点之间是否可以连线
{
if(a.x>=b.x)
return false;
bool falg=true;
int i=;
while(wX[i]<=a.x&&i<n)
i++;
while(wX[i]<b.x&&i<n)
{
if(cross(a.x,a.y,b.x,b.y,wX[i],)*cross(a.x,a.y,b.x,b.y,wX[i],py[i][])<
||cross(a.x,a.y,b.x,b.y,wX[i],py[i][])*cross(a.x,a.y,b.x,b.y,wX[i],py[i][])<
||cross(a.x,a.y,b.x,b.y,wX[i],py[i][])*(cross(a.x,a.y,b.x,b.y,wX[i],))<)
{
falg=false;
break;
}
i++;
}
return falg;
} double Bellman(int beg,int end)
{
for(int i=;i<maxx;i++)
dis[i]=INF;
dis[beg]=;
bool EX=true;
for(int i=;i<=Psize&&EX;i++)
{
EX=false;
for(int j=;j<Esize;j++)
{
if(dis[Edge[j].u]<INF&&dis[Edge[j].v]>(dis[Edge[j].u]+g[Edge[j].u][Edge[j].v]))
{
dis[Edge[j].v]=(dis[Edge[j].u]+g[Edge[j].u][Edge[j].v]);
EX=true;
}
}
}
return dis[end];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==-)
break;
p[].x=;
p[].y=;
Psize=;
for(int i=; i<n; i++)
{
cin>>wX[i];
for(int j=; j<; j++)
{
p[Psize].x=wX[i];
cin>>p[Psize].y;
py[i][j]=p[Psize].y;
Psize++;
}
}
p[Psize].x=;
p[Psize].y=;
for(int i=; i<=Psize; i++)
{
for(int j=; j<=Psize; j++)
{
g[i][j]==INF;
}
}
Esize=;
for(int i=; i<=Psize; i++)
{
for(int j=i+; j<=Psize; j++)
{
if(IsOk(p[i],p[j]))
{
g[i][j]=Dis(p[i],p[j]);
Edge[Esize].u=i;
Edge[Esize].v=j;
Esize++;
}
}
}
printf("%.2lf\n",Bellman(,Psize));
}
return ;
}

poj 1556 The Doors的更多相关文章

  1. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  2. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  3. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  4. POJ 1556 The Doors(线段交+最短路)

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5210   Accepted: 2124 Descrip ...

  5. poj 1556 The Doors(线段相交,最短路)

      The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7430   Accepted: 2915 Descr ...

  6. POJ 1556 The Doors 线段判交+Dijkstra

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6734   Accepted: 2670 Descrip ...

  7. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  8. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  9. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

随机推荐

  1. C# 操作pem 文件

    using Dscf.Bpl.InformationAuditBpl; using Dscf.Bpl.ProductBpl; using Dscf.Global.CommonAduit; using ...

  2. 【EF学习笔记11】----------查询中常用的扩展方法

    先来看一下我们的表结构: 首先毫无疑问的要创建我们的上下文对象: using (var db = new Entities()) { //执行操作 } Average 平均值: //查询平均分 Con ...

  3. 转(Delphi 新窑洞):使用delphi 开发多层应用(十七)使用RTC web 服务器返回JSON

    RTC作为delphi 的最专业的web 应用服务器,如果客户端要使用JSON 的话,那么使用RTC 应该也是一种 非常好的选择.下面我们做一个使用RTC web 服务器返回数据库JSON 的例子. ...

  4. VMware学习笔记(一)

    vmware核心产品是vSphere,而vSphere主要包括ESXi和vCenterServer. ESXi不依赖其它操作系统OS,安装在每一台物理机上,ESXi是免费的.在ESXi主机上再安装vS ...

  5. 【228】◀▶ Excel 函数说明

    官方帮助:Excel 函数(按字母顺序列出) 官方帮助:Excel 函数(按类别列出) 参考:EXCEL常用函数大全 01   N_ELEMENTS 表达式或者变量的元素个数. 02   DEFSYS ...

  6. CSS3常用选择器(二)

    本文继续介绍css3新增的选择器. 1.选择器 first-child.last-child.nth-child 和 nth-last-child 利用这几个选择器能够针对一个父元素中的第一个子元素. ...

  7. Java设计模式——适配器模式

    JAVA 设计模式 适配器模式 用途 适配器模式 (Adapter) 将一个类的接口转换成客户希望的另外一个接口. Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作. 适配器 ...

  8. Mahout源码分析之 -- 文档向量化TF-IDF

    fesh个人实践,欢迎经验交流!Blog地址:http://www.cnblogs.com/fesh/p/3775429.html Mahout之SparseVectorsFromSequenceFi ...

  9. 转 A Week with Mozilla's Rust

    转自http://relistan.com/a-week-with-mozilla-rust/ A Week with Mozilla's Rust I want another systems la ...

  10. Spring RMI (Spring 远程方法调用)

    所需jar包...?    不纠结,一股脑儿全导! 源码地址:http://pan.baidu.com/s/1jG8eOmy 先放结构图如下,客户端和服务端都在一个项目中.也可以把服务端的xxx导成j ...