原文地址 en cn

本文内容

  • 表现平平的 MATLAB
  • 貌似强大的 Julia
  • 本身无错的 R 语言
  • 逐渐没落的 Perl
  • 老而弥坚的 Python

我个人很喜欢 Python~

随着科技的发展,拥有高容量、高速度和多样性的大数据已经成为当今时代的主题词。数据科学领域中所采用的机器学习编程语言大相径庭。究竟哪种语言最适合机器学习成为争论不休的话题。近日,密西根州立大学的博士生 Sebastian Raschka 再次发起了机器学习编程语言之争,分析了自己选择 Python 的原因。

目前,机器学习牵涉的编程语言十分多样,包括了 MATLAB、Julia、R、Perl、Python、Ruby 等等。首先,Raschka 定义了语言好坏的原则:一门好的语言应该使得编写、调试和执行代码的总时间最短。然后,他花大篇幅讲述了一个简单的道理——没有一门语言是对所有情况、所有人都十分适合的。

Roberto Waltman:“在这种唯一正确的方式下,面向对象的 Spaghetti code 就是 Lasagna code。”

针对具体的应用场景以及参与项目的人员,开发团队或个人要对任务需求进行评估,再结合人员对于各个语言的熟悉程度和语言生态环境的情况等等,作出选择。接下来,Raschka 开始正式点评各个语言相对与 Python 在机器学习时的优缺点。

表现平平的 MATLAB

作为机器学习、模式识别等方面经常使用的工具,MATLAB 被放在了第一个分析。Raschka 认为,MATLAB 在实现机器学习算法时要比 Python 或者 NumPy 更加自然。很多高校也在计算机科学相关的课程中教授 MATLAB 语言。然而,MATLAB 也存在很多的缺点:价格昂贵、非开源、性能表现平平、语法不符合程序员的习惯等。例如,MATLAB 中矩阵乘积运算操作为 X.dot(Y),而 Python为 X@W,更加简洁、明了。

各种语言相对于 C 的测试性能——C 的性能为1.0,越小越好,源:http://julialang.org/benchmarks/
从上图可以看出,MATLAB 的性能比 Python、Go、Java 等语言要差很多。Raschka 也提到,上图中 Python 的性能也表现不好。但是,现在性能强劲的 GPU 为 Python 提供了强大的后盾。2010年,Python 中的 Theano 库在CPU上运行时,其速度是 NumPy的1.8倍。而 Theano 在GPU上运行时,其速度就是 NumPy 的11倍。因此,在目前更高性能的 GPU 的帮助下,Python 性能已经有了更大的改进。

貌似强大的 Julia

作为一门新型的语言,Julia 在设计之处就充分借鉴了 C/Ruby/Python 等语言的经验,试图重新融合众家之长,为科学计算提供一个有力的工具。Raschka 充分认可了该语言。然而,对于其未来Julia是否会流行,Raschka 持保留态度。

Bjarne Stroustrup:世界上只有两种语言——大家一直在抱怨的和无人问津的。

Raschka 认为一个语言是否有用又很大程度上取决于其是否流行。只有被广大编程人员所熟知的编程语言,相关的库才会更多,遇到问题时也能够方便的找到答案,且易于团队合作和代码分享。语言本身也会随着社区的关注不断得以改善。在流行度上,Julia 并没有什么优势。

本身无错的 R 语言

接下来,Raschka 又提到了 R 语言。其实,Raschka 之前使用过 R 语言,而且还专门撰写了一部有关R 语言中Heat map的书。而且,他自己也不认为 R 语言存在任何令人不满意的地方。据Spectrum IEEE统计,2015年排名前十的编程语言,R语言是提升最快的。近期,微软对R语言表现出极大的兴趣。并且很快,微软的Azure 便开始支持R语言了。

Alan J. Perlis:当某人说“我想要一门编程语言。它要能够根据我的目标自动生成代码”。让他拿根棒棒糖,一边玩去吧!

Raschka 总结 R 和 Python 之间的不同在于,R是统计学家开发的(数学)语言,而 Python 是计算领域科学家开发,可以应用到统计学的编程语言。这就是说,二者都可以很好的应用于数据科学或者机器学习,但 Python 的语法更容易被程序员所接受。

逐渐没落的 Perl

Raschka 简单分析了 Perl 语言。作为一门古老的语言,Perl 已经不可避免的走向了没落。Raschka 表示,Perl 曾经是他学习的第一门语言。但是,Perl 目前主要用于简单的脚本编写,已经很少应用在机器学习的算法编写方面。

老而弥坚的 Python

最后,Raschka 夸赞了自己所喜爱的 Python 语言。尽管 Python 已经走过了20多年的风雨历程(由Guido van Rossum于1989年发明,第一个公开发行版发行于1991年),Raschka 认为它仍然可以继续流行下去。而且,Raschka 还不遗余力的列出了自己最喜欢的 Python 工具——NumPy、Theano、scikit-learnmatplotlib 等。

  • NumPy: My favorite library for working with array structures and vectorizing equations using linear algebra; augmented by SciPy.
  • Theano: Implementing machine learning algorithms for the heavy-lifting and distributing computations across cores in my GPU(s).
  • scikit-learn: The most convenient API for the daily, more basic machine learning tasks.
  • matplotlib: My library of choice when it comes to plotting. Sometimes I also use seaborn for particular plots, for example, the heat maps are particularly great!

至于 Ruby、Java、Scala、Lua 等,Raschka 没有亲身体验,暂未点评。

对 Raschka 的言论,很多人表示赞同,也有不少人反对。有人表示,自己从R切换到Python,主要原因也是Python更方便与团队之外的人进行合作和沟通。也有人表示,作为一个新入门的程序员,利用R进行数据科学的编程可以利用很多现成的库,十分得心应手。更有与Python打过8年交道的资深程序员表示,Julia十分具有吸引力,愿意花时间去尝试该语言。亲爱的读者朋友,你眼中最好的机器学习编程语言又是哪个呢?

机器学习编程语言之争,Python 夺魁【转载+整理】的更多相关文章

  1. 机器学习编程语言之争,Python夺魁

    机器学习编程语言之争,Python夺魁 随着科技的发展,拥有高容量.高速度和多样性的大数据已经成为当今时代的主题词.数据科学领域中所采用的机器学习编程语言大相径庭.究竟哪种语言最适合机器学习成为争论不 ...

  2. 四大机器学习编程语言对比:R、Python、MATLAB、Octave

    本文作者是一位机器学习工程师,他比较了四种机器学习编程语言(工具):R.Python.MATLAB 和 OCTAVE.作者列出了这些语言(工具)的优缺点,希望对想开始学习它们的人有用. 图源:Pixa ...

  3. 机器学习1—简介及Python机器学习环境搭建

    简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算 ...

  4. 第二弹:超全Python学习资源整理(进阶系列)

    造一个草原要一株三叶草加一只蜜蜂.一株三叶草,一只蜂,再加一个梦.要是蜜蜂少,光靠梦也行. - 狄金森 "成为编程大牛要一门好语言加一点点天分.一门好语言,一点点天分,再加一份坚持.要是天分 ...

  5. 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

    编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展.最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整 ...

  6. 机器学习之线性回归(纯python实现)][转]

    本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都 ...

  7. 机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

    机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域 ...

  8. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  9. !!对python列表学习整理列表及数组详细介绍

    1.Python的数组分三种类型:(详细见 http://blog.sina.com.cn/s/blog_6b783cbd0100q2ba.html) (1) list 普通的链表,初始化后可以通过特 ...

随机推荐

  1. javascript 对象属性的get set访问器写法

    function Person() {     var age = new Date().getFullYear() - 18;     Object.defineProperty(this, &qu ...

  2. java设计模式之外观模式(门面模式)

    针对外观模式,在项目开发和实际运用中十分频繁,但是其极易理解,下面就简要介绍一下. 一.概念介绍 外观模式(Facade),他隐藏了系统的复杂性,并向客户端提供了一个可以访问系统的接口.这种类型的设计 ...

  3. java环境配置总结

    最近接触java,在环境配置上费了不少劲.总结一下: 1.首先安装jdk和Eclipse,jdk我安装的是1.6,Eclipse可以从官网下载:http://download.eclipse.org/ ...

  4. Activity的四种启动模式详解

    Activity的启动模式在清单文件AndroidManifest.xml中的Activity属性中进行设置: 如:<activity android:name=".MainActiv ...

  5. 隐马尔科夫模型HMM学习最佳范例

    谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...

  6. Unrecognized Windows Sockets error: 0: JVM_Bind 异常怎么办

    Unrecognized Windows Sockets error: 0: JVM_Bind 异常解决办法 java.net.SocketException: Unrecognized Window ...

  7. azure之MSSQL服务性能测试

    azure给我们提供非常多的服务而这些服务可以让企业轻而易举地在上构建一个健壮的服务体系.但在使用azure的相关产品服务时还是应该对相关的服务有一些简单的性能了解才能更好的让企业购买适合自己的服务产 ...

  8. javascript中的call()和apply()方法的使用

    1.方法定义 call方法: 语法:call([thisObj[,arg1[, arg2[,   [,.argN]]]]]) 定义:调用一个对象的一个方法,以另一个对象替换当前对象. 说明: call ...

  9. Nim教程【一】

    这应该是国内第一个关于Nim入门的系列教程 什么是Nim 我们先来引述网友 Luikore的一段话: Nim 不是函数式的, 但 Nim 支持卫生宏, 可以做 AST 重写, 可以自定编译规则, 是静 ...

  10. 说不尽的MVVM(5) - 消息满天飞

    知识预备 阅读本文,我假定你具备以下知识: C#和WPF基础知识 Lambda表达式 清楚ViewModel的职责 如果我们的程序需要弹出一个MessageBox,我们应该怎么做? 我见过不少人在Vi ...