现在的CMS系统、博客系统、BBS等都喜欢使用标签tag作交叉链接,因此我也尝鲜用了下。但用了后发现我想查询某个tag的文章列表时速度很慢,达到5秒之久!百思不解(后来终于解决),我的表结构是下面这样的,文章只有690篇。

文章表article(id,title,content)
标签表tag(tid,tag_name)
标签文章中间表article_tag(id,tag_id,article_id)
其中有个标签的tid是135,我帮查询标签tid是135的文章列表
用以下语句时发现速度好慢,我文章才690篇
select id,title from article where id in(
select article_id from article_tag where tag_id=135
)
其中这条速度很快:select article_id from article_tag where tag_id=135
查询结果是五篇文章,id为428,429,430,431,432
我用写死的方式用下面sql来查文章也很快
select id,title from article where id in(
428,429,430,431,432
)
我在SqlServer中好像不会这样慢,不知MySQL怎样写好点,也想不出慢在哪里。

后来我找到了解决方法:

select id,title from article where id in(
select article_id from (select article_id from article_tag where tag_id=135) as tbt
)

其它解决方法:(举例)

mysql> select * from abc_number_prop where number_id in (select number_id from abc_number_phone where phone = '82306839');

为了节省篇幅,省略了输出内容,下同。

67 rows in set (12.00 sec)

只有67行数据返回,却花了12秒,而系统中可能同时会有很多这样的查询,系统肯定扛不住。用desc看一下(注:explain也可)

mysql> desc select * from abc_number_prop where number_id in (select number_id from abc_number_phone where phone = '82306839');
+----+--------------------+------------------+--------+-----------------+-------+---------+------------+---------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+------------------+--------+-----------------+-------+---------+------------+---------+--------------------------+
| 1 | PRIMARY | abc_number_prop | ALL | NULL | NULL | NULL | NULL | 2679838 | Using where |
| 2 | DEPENDENT SUBQUERY | abc_number_phone | eq_ref | phone,number_id | phone | 70 | const,func | 1 | Using where; Using index |
+----+--------------------+------------------+--------+-----------------+-------+---------+------------+---------+--------------------------+
2 rows in set (0.00 sec)

从上面的信息可以看出,在执行此查询时会扫描两百多万行,难道是没有创建索引吗,看一下

mysql>show index from abc_number_phone;
+------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| abc_number_phone | 0 | PRIMARY | 1 | number_phone_id | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 0 | phone | 1 | phone | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 0 | phone | 2 | number_id | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 1 | number_id | 1 | number_id | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 1 | created_by | 1 | created_by | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 1 | modified_by | 1 | modified_by | A | 36879 | NULL | NULL | YES | BTREE | | |
+------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
6 rows in set (0.06 sec)

mysql>show index from abc_number_prop;
+-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| abc_number_prop | 0 | PRIMARY | 1 | number_prop_id | A | 311268 | NULL | NULL | | BTREE | | |
| abc_number_prop | 1 | number_id | 1 | number_id | A | 311268 | NULL | NULL | | BTREE | | |
| abc_number_prop | 1 | created_by | 1 | created_by | A | 311268 | NULL | NULL | | BTREE | | |
| abc_number_prop | 1 | modified_by | 1 | modified_by | A | 311268 | NULL | NULL | YES | BTREE | | |
+-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
4 rows in set (0.15 sec)

从上面的输出可以看出,这两张表在number_id字段上创建了索引的。

看看子查询本身有没有问题。

mysql> desc select number_id from abc_number_phone where phone = '82306839';
+----+-------------+------------------+------+---------------+-------+---------+-------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------------+------+---------------+-------+---------+-------+------+--------------------------+
| 1 | SIMPLE | abc_number_phone | ref | phone | phone | 66 | const | 6 | Using where; Using index |
+----+-------------+------------------+------+---------------+-------+---------+-------+------+--------------------------+
1 row in set (0.00 sec)

没有问题,只需要扫描几行数据,索引起作用了。查询出来看看

mysql> select number_id from abc_number_phone where phone = '82306839';
+-----------+
| number_id |
+-----------+
| 8585 |
| 10720 |
| 148644 |
| 151307 |
| 170691 |
| 221897 |
+-----------+
6 rows in set (0.00 sec)

直接把子查询得到的数据放到上面的查询中

mysql> select * from abc_number_prop where number_id in (8585, 10720, 148644, 151307, 170691, 221897);

67 rows in set (0.03 sec)

速度也快,看来MySQL在处理子查询的时候是不够好。我在MySQL 5.1.42 和 MySQL 5.5.19 都进行了尝试,都有这个问题。

搜索了一下网络,发现很多人都遇到过这个问题:

参考资料1:使用连接(JOIN)来代替子查询(Sub-Queries) mysql优化系列记录
http://blog.csdn.net/hongsejiaozhu/article/details/1876181
参考资料2:网站开发日记(14)-MYSQL子查询和嵌套查询优化
http://dodomail.iteye.com/blog/250199

根据网上这些资料的建议,改用join来试试。

修改前:select * from abc_number_prop where number_id in (select number_id from abc_number_phone where phone = '82306839');

修改后:select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839';

mysql> select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839';

67 rows in set (0.00 sec)

效果不错,查询所用时间几乎为0。看一下MySQL是怎么执行这个查询的

mysql>desc select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839';
+----+-------------+-------+------+-----------------+-----------+---------+-----------------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+-----------------+-----------+---------+-----------------+------+--------------------------+
| 1 | SIMPLE | b | ref | phone,number_id | phone | 66 | const | 6 | Using where; Using index |
| 1 | SIMPLE | a | ref | number_id | number_id | 4 | eap.b.number_id | | |
+----+-------------+-------+------+-----------------+-----------+---------+-----------------+------+--------------------------+
2 rows in set (0.00 sec)

小结:当子查询速度慢时,可用JOIN来改写一下该查询来进行优化。

网上也有文章说,使用JOIN语句的查询不一定总比使用子查询的语句快。

参考资料3:改变了对Mysql子查询的看法
http://hi.baidu.com/yzx110/blog/item/e694f536f92075360b55a92b.html

mysql手册也提到过,具体的原文在mysql文档的这个章节:

I.3. Restrictions on Subqueries

13.2.8. Subquery Syntax

摘抄:

1)关于使用IN的子查询:

Subquery optimization for IN is not as effective as for the = operator or for IN(value_list) constructs.

A typical case for poor IN subquery performance is when the subquery returns a small number of rows but the outer query returns a large number of rows to be compared to the subquery result.

The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correlated subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery:

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

If the inner and outer queries return M and N rows, respectively, the execution time becomes on the order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.

An implication is that an IN subquery can be much slower than a query written using an IN(value_list) construct that lists the same values that the subquery would return.

2)关于把子查询转换成join的:

The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a subquery can be executed more efficiently if you rewrite it as a join.

An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT join. Example:

SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);

That statement can be rewritten as follows:

SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;

But in this case, the join requires an extra DISTINCT operation and is not more efficient than the subquery

mysql in 子查询 效率慢 优化(转)的更多相关文章

  1. mysql in 子查询 效率慢,对比

    desc SELECT id,detail,groupId from hs_knowledge_point where groupId in ( UNION all ) UNION ALL SELEC ...

  2. mysql数据库的优化和查询效率的优化

    一.数据库的优化 1.优化索引.SQL 语句.分析慢查询: 2.设计表的时候严格根据数据库的设计范式来设计数据库: 3.使用缓存,把经常访问到的数据而且不需要经常变化的数据放在缓存中,能节约磁盘IO: ...

  3. MySQL的一次优化记录 (IN子查询和索引优化)

    这两天实习项目遇到一个网页加载巨慢的问题(10多秒),然后定位到是一个MySQL查询特别慢的语句引起的: SELECT * FROM ( SELECT DISTINCT t.vc_date, t.c_ ...

  4. MySQL 表子查询

    MySQL 表子查询 表子查询是指子查询返回的结果集是 N 行 N 列的一个表数据. MySQL 表子查询实例 下面是用于例子的两张原始数据表: article 表: aid title conten ...

  5. 深入MySQL(四):MySQL的SQL查询语句性能优化概述

    关于SQL查询语句的优化,有一些一般的优化步骤,本节就介绍一下通用的优化步骤. 一条查询语句是如何执行的 首先,我们如果要明白一条查询语句所运行的过程,这样我们才能针对过程去进行优化. 参考我之前画的 ...

  6. 记一次mysql多表查询(left jion)优化案例

    一次mysql多表查询(left jion)优化案例 在新上线的供需模块中,发现某一个查询按钮点击后,出不来结果,找到该按钮对应sql手动执行,发现需要20-30秒才能出结果,所以服务端程序判断超时, ...

  7. MySQL 行子查询(转)

    MySQL 行子查询 行子查询是指子查询返回的结果集是一行 N 列,该子查询的结果通常是对表的某行数据进行查询而返回的结果集. 一个行子查询的例子如下: SELECT * FROM table1 WH ...

  8. MySQL FROM 子查询

    FROM 子句中的子查询 MySQL FROM 子查询是指 FROM 的子句作为子查询语句,主查询再到子查询结果中获取需要的数据.FROM 子查询语法如下: SELECT ... FROM (subq ...

  9. MySQL 行子查询

    MySQL 行子查询 行子查询是指子查询返回的结果集是一行 N 列,该子查询的结果通常是对表的某行数据进行查询而返回的结果集. 一个行子查询的例子如下: SELECT * FROM table1 WH ...

随机推荐

  1. MySQL性能分析

    第一步 检查系统的状态 通过操作系统的一些工具检查系统的状态,比如CPU.内存.交换.磁盘的利用率,根据经验或与系统正常时的状态相比对,有时系统表面上看起来看空闲,这也可能不是一个正常的状态,因为cp ...

  2. HashMap 和 HashTable区别

    HashMap 非线程安全的 HashTable线程安全的 package Collections.Map; import java.util.HashMap; public class HashMa ...

  3. css中的默认margin

    上班打酱油中,你懂的; body的margin为8px; webkit默认行高18px:height18px; 默认font-size16px p默认margin是16px 0 16px 0; ul和 ...

  4. Mysql-提示java.sql.SQLException: Cannot convert value '0000-00-00 00:00:00' from column 7 to TIMESTAMP.

    在Mysql数据库中使用DATETIME类型来存储时间,使用JDBC中读取这个字段的时候,应该使用 ResultSet.getTimestamp(),这样会得到一个java.sql.Timestamp ...

  5. codeforces 715B:Complete The Graph

    Description ZS the Coder has drawn an undirected graph of n vertices numbered from 0 to n - 1 and m ...

  6. 洛谷P2633 王后万岁

    题目描述 byteland的王后深受百姓爱戴.为了表达他们的爱,国民们打算占领一个新的国家,并以王后的名字命名.这个国家有n座城市.城市之间有双向道路连接,且每两个城市之间有且仅有一条道路.每座城市对 ...

  7. java连接mysql(二)

    模拟转账成功时的业务场景 import java.sql.*; public class TransactionDemo1 { public static void main(String[] arg ...

  8. POJ 2481Cows(树状数组 + 好题)

    Cows Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15222   Accepted: 5070 Description ...

  9. POJ3070Fibonacci(矩阵快速幂+高效)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11587   Accepted: 8229 Descri ...

  10. mongo操作

    详细使用网址:http://blog.csdn.net/xinghebuluo/article/details/7050811 MongoDB基本使用 成功启动MongoDB后,再打开一个命令行窗口输 ...