http://poj.org/problem?id=1228

随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上)

然后愉快敲完凸包+斜率判定,交上去wa了QAQ。原因是忘记特判一个地方....因为我们求的凸包是三点共线的凸包,在凸包算法中我们叉积判断只是>0而不是>=0,那么会有一种数据为所有点共线的情况,此时求出来的凸包上的点是>原来的点的(此时恰好符合答案NO,因为可以在这条线外随便点一个点就是一个凸包了...)然后特判一下..

就过了..

证明很简单:如果这条边没有3个点及以上,那么必然可以在边外点一个点成为新的凸包。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } struct ipt { int x, y; };
int icross(ipt &a, ipt &b, ipt &c) {
static int x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
bool cmp(const ipt &a, const ipt &b) { return a.x==b.x?a.y<b.y:a.x<b.x; }
void tu(ipt *p, ipt *s, int n, int &top) {
sort(p, p+n, cmp);
top=-1;
rep(i, n) {
while(top>0 && icross(p[i], s[top], s[top-1])>0) --top;
s[++top]=p[i];
}
static int k; k=top;
for3(i, n-2, 0) {
while(top>k && icross(p[i], s[top], s[top-1])>0) --top;
s[++top]=p[i];
}
if(n>1) --top;
++top;
} const int N=1005;
ipt a[N], b[N];
int n;
int main() {
int ca=getint();
while(ca--) {
read(n); int ttt=n;
rep(i, n) read(a[i].x), read(a[i].y); //dbg(n);
if(n<=2) { puts("NO"); continue; }
tu(a, b, n, n);
if(n>ttt) { puts("NO"); continue; }
//dbg(n);
b[n]=b[0];
int up=b[1].x-b[0].x, down=b[1].y-b[0].y, cnt=1, flag=1;
for1(i, 1, n-1) {
int uup=b[i+1].x-b[i].x, ddown=b[i+1].y-b[i].y; // printf("%d:(%d,%d)\n", i, b[i].x, b[i].y);
if(up*ddown!=uup*down) {
if(cnt<2) { flag=0; break; }
up=uup;
down=ddown;
cnt=1;
}
else ++cnt;
}
if(cnt<2) flag=0;
flag?puts("YES"):puts("NO");
}
return 0;
}

  


Description

Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.

Input

The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.

Output

There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.

Sample Input

1
6
0 0
1 2
3 4
2 0
2 4
5 0

Sample Output

NO

Source

【POJ】1228 Grandpa's Estate(凸包)的更多相关文章

  1. POJ 1228 Grandpa's Estate(凸包)

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11289   Accepted: 3117 ...

  2. POJ 1228 Grandpa's Estate 凸包 唯一性

    LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...

  3. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  4. POJ 1228 Grandpa's Estate(凸包唯一性判断)

    Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...

  5. POJ 1228 Grandpa's Estate --深入理解凸包

    题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...

  6. 简单几何(求凸包点数) POJ 1228 Grandpa's Estate

    题目传送门 题意:判断一些点的凸包能否唯一确定 分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的.还有求凸包的点数<=2的情况一定不能确定. /********* ...

  7. poj - 1228 - Grandpa's Estate

    题意:原来一个凸多边形删去一些点后剩n个点,问这个n个点能否确定原来的凸包(1 <= 测试组数t <= 10,1 <= n <= 1000). 题目链接:http://poj. ...

  8. 【POJ 1228】Grandpa's Estate 凸包

    找到凸包后暴力枚举边进行$check$,注意凸包是一条线(或者说两条线)的情况要输出$NO$ #include<cmath> #include<cstdio> #include ...

  9. poj 1228 稳定凸包

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12337   Accepted: 3451 ...

随机推荐

  1. LocalResizeIMG前端HTML5本地压缩图片上传,兼容移动设备IOS,android

    LocalResizeIMG前端HTML5本地压缩图片上传,兼容移动设备IOS,android jincon 发表于 2015-02-26 18:31:01 发表在: php开发 localresiz ...

  2. Shell脚本中判断输入参数个数的方法投稿:junjie 字体:[增加 减小] 类型:转载

    Shell脚本中判断输入参数个数的方法 投稿:junjie 字体:[增加 减小] 类型:转载   这篇文章主要介绍了Shell脚本中判断输入参数个数的方法,使用内置变量$#即可实现判断输入了多少个参数 ...

  3. 【leetcode】Palindrome Partitioning

    Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...

  4. (转)Sublime Text 2 2.0.2 序列号

    ----- BEGIN LICENSE -----Andrew WeberSingle User LicenseEA7E-855605813A03DD 5E4AD9E6 6C0EEB94 BC9979 ...

  5. codeforces A. Vasily the Bear and Triangle 解题报告

    题目链接:http://codeforces.com/problemset/problem/336/A 好简单的一条数学题,是8月9日的.比赛中没有做出来,今天看,从pupil变成Newbie了,那个 ...

  6. 【python】filter()

    来源:http://www.jb51.net/article/54316.htm filter函数: filter()函数可以对序列做过滤处理,就是说可以使用一个自定的函数过滤一个序列,把序列的每一项 ...

  7. 手把手教你cuda5.5与VS2010的编译环境搭建

    参考:http://www.cnblogs.com/xing901022/archive/2013/08/09/3248469.html 目前版本的cuda是很方便的,它的一个安装里面包括了Toolk ...

  8. ASP.Net核心对象HttpRequest

    描述context. Request["username"]; 通过这种方式,能够得到一个HttpRequest对象.HttpRequest对象描述了,关于请求的相关信息,我们可以 ...

  9. Liz Murray成功故事的偶然与必然(转)

    偶尔,我看到了一部电影:Homeless to Harvard (风雨哈佛路) 说句老实话,她( Liz Murray 莉丝·默里 )的经历确实让人钦佩和学习! 下面我看到他人写的有这本电影的评论,觉 ...

  10. Xamarin.Android开发实践(十一)

    Xamarin.Android之使用百度地图起始篇 一.前言 如今跨平台开发层出不穷,而对于.NET而言时下最流行的当然还是 Xamarin,不仅仅能够让我们在熟悉的Vs下利用C#开发,在对原生态类库 ...