http://poj.org/problem?id=1228

随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上)

然后愉快敲完凸包+斜率判定,交上去wa了QAQ。原因是忘记特判一个地方....因为我们求的凸包是三点共线的凸包,在凸包算法中我们叉积判断只是>0而不是>=0,那么会有一种数据为所有点共线的情况,此时求出来的凸包上的点是>原来的点的(此时恰好符合答案NO,因为可以在这条线外随便点一个点就是一个凸包了...)然后特判一下..

就过了..

证明很简单:如果这条边没有3个点及以上,那么必然可以在边外点一个点成为新的凸包。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } struct ipt { int x, y; };
int icross(ipt &a, ipt &b, ipt &c) {
static int x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
bool cmp(const ipt &a, const ipt &b) { return a.x==b.x?a.y<b.y:a.x<b.x; }
void tu(ipt *p, ipt *s, int n, int &top) {
sort(p, p+n, cmp);
top=-1;
rep(i, n) {
while(top>0 && icross(p[i], s[top], s[top-1])>0) --top;
s[++top]=p[i];
}
static int k; k=top;
for3(i, n-2, 0) {
while(top>k && icross(p[i], s[top], s[top-1])>0) --top;
s[++top]=p[i];
}
if(n>1) --top;
++top;
} const int N=1005;
ipt a[N], b[N];
int n;
int main() {
int ca=getint();
while(ca--) {
read(n); int ttt=n;
rep(i, n) read(a[i].x), read(a[i].y); //dbg(n);
if(n<=2) { puts("NO"); continue; }
tu(a, b, n, n);
if(n>ttt) { puts("NO"); continue; }
//dbg(n);
b[n]=b[0];
int up=b[1].x-b[0].x, down=b[1].y-b[0].y, cnt=1, flag=1;
for1(i, 1, n-1) {
int uup=b[i+1].x-b[i].x, ddown=b[i+1].y-b[i].y; // printf("%d:(%d,%d)\n", i, b[i].x, b[i].y);
if(up*ddown!=uup*down) {
if(cnt<2) { flag=0; break; }
up=uup;
down=ddown;
cnt=1;
}
else ++cnt;
}
if(cnt<2) flag=0;
flag?puts("YES"):puts("NO");
}
return 0;
}

  


Description

Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandpa's belongings. The most valuable one was a piece of convex polygon shaped farm in the grandpa's birth village. The farm was originally separated from the neighboring farms by a thick rope hooked to some spikes (big nails) placed on the boundary of the polygon. But, when Kamran went to visit his farm, he noticed that the rope and some spikes are missing. Your task is to write a program to help Kamran decide whether the boundary of his farm can be exactly determined only by the remaining spikes.

Input

The first line of the input file contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case contains an integer n (1 <= n <= 1000) which is the number of remaining spikes. Next, there are n lines, one line per spike, each containing a pair of integers which are x and y coordinates of the spike.

Output

There should be one output line per test case containing YES or NO depending on whether the boundary of the farm can be uniquely determined from the input.

Sample Input

1
6
0 0
1 2
3 4
2 0
2 4
5 0

Sample Output

NO

Source

【POJ】1228 Grandpa's Estate(凸包)的更多相关文章

  1. POJ 1228 Grandpa's Estate(凸包)

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11289   Accepted: 3117 ...

  2. POJ 1228 Grandpa's Estate 凸包 唯一性

    LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...

  3. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  4. POJ 1228 Grandpa's Estate(凸包唯一性判断)

    Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...

  5. POJ 1228 Grandpa's Estate --深入理解凸包

    题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...

  6. 简单几何(求凸包点数) POJ 1228 Grandpa's Estate

    题目传送门 题意:判断一些点的凸包能否唯一确定 分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的.还有求凸包的点数<=2的情况一定不能确定. /********* ...

  7. poj - 1228 - Grandpa's Estate

    题意:原来一个凸多边形删去一些点后剩n个点,问这个n个点能否确定原来的凸包(1 <= 测试组数t <= 10,1 <= n <= 1000). 题目链接:http://poj. ...

  8. 【POJ 1228】Grandpa's Estate 凸包

    找到凸包后暴力枚举边进行$check$,注意凸包是一条线(或者说两条线)的情况要输出$NO$ #include<cmath> #include<cstdio> #include ...

  9. poj 1228 稳定凸包

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12337   Accepted: 3451 ...

随机推荐

  1. 我常用的delphi 第三方控件

    转载:http://www.cnblogs.com/xalion/archive/2012/01/09/2317246.html 有网友问我常用的控件及功能.我先大概整理一下,以后会在文章里面碰到时再 ...

  2. web api 解决跨域的问题

    web api 总是会遇到跨域的问题,今天我找到了如下方法解决跨域: 1: a:在配置文件中的 加上如下代码 <system.webServer> <httpProtocol> ...

  3. c# 继承,多态,new /overrid 区别, 引用父类的方法

    好久没碰c#了,偶尔需要制作点小工具.为了一个灵活的架构设计,需要对继承/多态有比较深刻的理解. 不料忘得差不多了,好吧,再来回忆下.直接上代码了,如下: using System; using Sy ...

  4. 【Hadoop】Hive HSQ 使用 && 自定义HQL函数

    4 HQL 4.1 官网 4.1.1 https://cwiki.apache.org/confluence/display/Hive/LanguageManual 4.1.2 性能调优 4.1.2. ...

  5. kettle转换JavaScript加载外部js文件

    日常开发中,时常会出现这样一种情况.有大量的函数是通用的.而每个JavaScript里面写一遍,给维护带来很大的困扰.因而需要将公共的函数写在外部js文件中.这时就需要引入外部的公共文件了.下面是在转 ...

  6. 10件在PHP 7中不要做的事情

    刚刚在园子里看到一篇特别好的文章,就拿到我的园子里分享了. 1. 不要使用mysql_函数 这一天终于来了,从此你不仅仅“不应该”使用mysql_函数.PHP 7 已经把它们从核心中全部移除了,也就是 ...

  7. dubbo.xsd

    <xsd:import namespace="http://www.w3.org/XML/1998/namespace"/> <xsd:import namesp ...

  8. sublime text3083 破解 插件汉化

      sublime text  注册码 1. Sublime Text 2.x 版本 —– BEGIN LICENSE —– Andrew Weber Single User License EA7E ...

  9. EZ的间谍网络(codevs 4093)

    由于外国间谍的大量渗入,学校安全正处于高度的危机之中.YJY决定挺身而作出反抗.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手 ...

  10. 一塔湖图(codevs 1024)

    题目描述 Description 小松所在的PK大学校园又称作燕园,是一个十分美丽的校园.有博雅塔,未名湖,亚洲最大的高校图书馆,人称“一塔湖图”.但是由于燕园的历史比较悠久,所以很多的老房子都要不断 ...