本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现。

Word2vec

Word2vec并不是一个模型——它其实是2013年Mikolov开源的一款用于计算词向量的工具。关于Word2vec更多的原理性的介绍,可以参见我的另一篇博客:word2vec前世今生

在Gensim中实现word2vec模型非常简单。首先,我们需要将原始的训练语料转化成一个sentence的迭代器;每一次迭代返回的sentence是一个word(utf8格式)的列表:

class MySentences(object):
def __init__(self, dirname):
self.dirname = dirname def __iter__(self):
for fname in os.listdir(self.dirname):
for line in open(os.path.join(self.dirname, fname)):
yield line.split() sentences = MySentences('/some/directory') # a memory-friendly iterator

接下来,我们用这个迭代器作为输入,构造一个Gensim内建的word2vec模型的对象(即将原始的one-hot向量转化为word2vec向量):

model = gensim.models.Word2Vec(sentences)

如此,便完成了一个word2vec模型的训练。

我们也可以指定模型训练的参数,例如采用的模型(Skip-gram或是CBoW);负采样的个数;embedding向量的维度等。具体的参数列表在这里

同样,我们也可以通过调用save()load()方法完成word2vec模型的持久化。此外,word2vec对象也支持原始bin文件格式的读写。

Word2vec对象还支持online learning。我们可以将更多的训练数据传递给一个已经训练好的word2vec对象,继续更新模型的参数:

model = gensim.models.Word2Vec.load('/tmp/mymodel')
model.train(more_sentences)

若要查看某一个word对应的word2vec向量,可以将这个word作为索引传递给训练好的模型对象:

model['computer']  # raw NumPy vector of a word

Doc2vec

Doc2vec是Mikolov在word2vec基础上提出的另一个用于计算长文本向量的工具。它的工作原理与word2vec极为相似——只是将长文本作为一个特殊的token id引入训练语料中。在Gensim中,doc2vec也是继承于word2vec的一个子类。因此,无论是API的参数接口还是调用文本向量的方式,doc2vec与word2vec都极为相似。

主要的区别是在对输入数据的预处理上。Doc2vec接受一个由LabeledSentence对象组成的迭代器作为其构造函数的输入参数。其中,LabeledSentence是Gensim内建的一个类,它接受两个List作为其初始化的参数:word list和label list。

from gensim.models.doc2vec import LabeledSentence
sentence = LabeledSentence(words=[u'some', u'words', u'here'], tags=[u'SENT_1'])

类似地,可以构造一个迭代器对象,将原始的训练数据文本转化成LabeledSentence对象:

class LabeledLineSentence(object):
def __init__(self, filename):
self.filename = filename def __iter__(self):
for uid, line in enumerate(open(filename)):
yield LabeledSentence(words=line.split(), labels=['SENT_%s' % uid])

准备好训练数据,模型的训练便只是一行命令:

from gensim.models import Doc2Vec
model = Doc2Vec(dm=1, size=100, window=5, negative=5, hs=0, min_count=2, workers=4)

该代码将同时训练word和sentence label的语义向量。如果我们只想训练label向量,可以传入参数train_words=False以固定词向量参数。更多参数的含义可以参见这里的API文档

注意,在目前版本的doc2vec实现中,每一个Sentence vector都是常驻内存的。因此,模型训练所需的内存大小同训练语料的大小正相关。

Gensim进阶教程:训练word2vec与doc2vec模型的更多相关文章

  1. 文本分布式表示(三):用gensim训练word2vec词向量

    今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一 ...

  2. 机器学习在入侵检测方面的应用 - 基于ADFA-LD训练集训练入侵检测判别模型

    1. ADFA-LD数据集简介 ADFA-LD数据集是澳大利亚国防学院对外发布的一套主机级入侵检测数据集合,包括Linux和Windows,是一个包含了入侵事件的系统调用syscall序列的数据集(以 ...

  3. 理解 Word2Vec 之 Skip-Gram 模型

    理解 Word2Vec 之 Skip-Gram 模型 天雨粟 模型师傅 / 果粉 https://zhuanlan.zhihu.com/p/27234078 508 人赞同了该文章 注明:我发现知乎有 ...

  4. LUSE: 无监督数据预训练短文本编码模型

    LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私 ...

  5. word2vec + transE 知识表示模型

    本文主要工作是将文本方法 (word2vec) 和知识库方法 (transE) 相融合作知识表示,即将外部知识库信息(三元组)加入word2vec语言模型,作为正则项指导词向量的学习,将得到的词向量用 ...

  6. Modelbuilder进阶教程

    Modelbuilder进阶教程 By 李远祥 Modelbuilder 进阶1 自定义变量 参数是用来交互操作的,因此,参数具备非常大的灵活性,包括参数的定义和调用. 除了工具里面的参数之外,还可以 ...

  7. word2vec 和 doc2vec 词向量表示

    Word2Vec 词向量的稠密表达形式(无标签语料库训练) Word2vec中要到两个重要的模型,CBOW连续词袋模型和Skip-gram模型.两个模型都包含三层:输入层,投影层,输出层. 1.Ski ...

  8. 4 关于word2vec的skip-gram模型使用负例采样nce_loss损失函数的源码剖析

    tf.nn.nce_loss是word2vec的skip-gram模型的负例采样方式的函数,下面分析其源代码. 1 上下文代码 loss = tf.reduce_mean( tf.nn.nce_los ...

  9. Word2Vec之Skip-Gram模型

    理解 Word2Vec 之 Skip-Gram 模型 模型 Word2Vec模型中,主要有Skip-Gram和CBOW两种模型,从直观上理解,Skip-Gram是给定input word来预测上下文. ...

随机推荐

  1. linux硬链接与软链接

    在linux操作系统中的文件数据除了实际的内容外,还会含有文件权限(rwx)与文件属性(owner,group,other等),文件系统通常会将这两部分的数据存放在不同的区块,文件权限与文件属性放置在 ...

  2. Xamarin.Android splash页面瞬间响应_避免APP启动闪白屏

    Application和Activity中的onCreate都进行了优化,基本没有耗时操作,但是启动应用之后还是会闪现一下白色背景,然后才进入Splash页面,对比了一下QQ.微信.微博等客户端,点击 ...

  3. phpcms v9调用多个栏目下文章的方法

    示例:{pc:get sql="SELECT * from v9_news where status=99 and catid in(6,7,8) order by id DESC" ...

  4. java poi read write xlsx

    package myjava; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundExce ...

  5. 译文:Nesting Your BEM?

    原文链接:http://csswizardry.com/2016/11/nesting-your-bem/ 在我开始这篇文章之前,我得说这不是一个建议或者是新的"练习指南".这只是 ...

  6. SOS: gnuplot fdtd的一个问题求助 perl vs python

    我用perl和python写了相同功能的一段程序,计算一维fdtd,用gnuplot动态显示,可是python的数据没有显示出来,看横纵坐标的变化数据是正确收到了的,如最后的图片,求大神指点,谢谢. ...

  7. 怎样绘制ZBrush中的纹理

    利用ZBrush的内置插件“投影大师”和“Polypainting”纹理贴图能够快速实现纹理的绘制.本文将对这两种方法的应用流程做一个介绍. 查看跟多内容请直接前往:http://www.zbrush ...

  8. UESTC 878 温泉旅馆 --性质+枚举

    设FA为A的牌中数字异或和,FB为B的. 则有性质: ans = (所有的(A&B=0)个数 + (FA=FB且A&B=0)的个数)/2.即所有的FA>FB的个数(除2是因为这里 ...

  9. 权限框架 - shiro 授权demo

    之前说了权限认证,其实也就是登录验证身份 这次来说说shiro的授权 shiro可以针对角色授权,或者访问资源授权 两者都行,但是在如今的复杂系统中,当然使用后者,如果你是小系统或者私活的话,前者即可 ...

  10. Java基础详解 (一)Java的类成员访问权限修饰词(以及类访问权限)

    在一个类的内部,其成员(包括成员变量和成员函数)能否被其他类所访问,取决于该成员的修饰词.Java的类成员访问权限修饰词有四类:private,无(默认情况下),protected和public.其权 ...