ARC058(2020.7.4)

A

从高到低依次填入能填的最小值即可。

B

首先可以发现这个区间实际上只有横着的一条边有用,那么我们可以在边界上枚举中转点使得不经过非法区域即可。

C

挺神的一道题。首先我们会发现如果直接算出合法序列非常不好做,因为可能一个合法序列中可能有多个满足条件的句子,那么很难设计一种状态不会记重,那么我们考虑容斥,算出不合法的序列。我们发现我们需要关注的实际上是原序列中的一段子串,并且需要判断该子串是否能能形成满足条件的句子,事实上这里的子串长度不会超过 \(X + Y + Z \le 17\) 于是我们可以考虑 \(dp\),令 \(dp_{i, j, k, \cdots}\) 为到第 \(i\) 为位置,最后 \(17\) 位分别为 \(j, k, \cdots\) 的总共不合法序列,首先与处理一下每个子串是否合法就可以做到 \(O(n 10 ^ {X + Y + Z})\)。现在我们考虑这样一个表示法,比如我们将 \(2\) 表示成 \(10\),将 \(4\) 表示成 \(1000\) 即将 \(x\) 表示成 \(1000\cdots\) 后面 \(x - 1\) 个 \(0\) 的形式,那么两个数加起来比如 \(2 + 4 = 101000\) 倒数第 \(6\) 位就变成了 \(1\),那么对于任意一个二进制串如果他在倒数 \(X + Y + Z, Y + Z, Z\) 的位置上为 \(1\) 那么这个子串就一定是一个满足条件的句子。换种说法,对于一个二进制串 \(S\),和答案串即只有倒数 \(X + Y + Z, Y + Z, Z\) 的位置上为 \(1\) 的串 \(Ans\) 满足 \(S \& Ans = Ans\) 那么 \(S\) 就是一个满足条件的子串。那么现在我们就可以将 \(dp\) 的最后暴力枚举的位置改成这样的状压的形式,再去看我们关心的最后 \(X + Y + Z\) 个位置,实际上就是二进制串下的最后 \(X + Y + Z\) 个位置,那么我们只需要记录最后 \(X + Y + Z\) 的答案即可,于是复杂度变成了 \(O(n 2 ^ {X + Y + Z})\).

D

字符串,咕咕咕....

Atcoder ARC-058的更多相关文章

  1. 【题解】Atcoder ARC#90 F-Number of Digits

    Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...

  2. AtCoder ARC 076E - Connected?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_c 平面上有一个R×C的网格,格点上可能写有数字1~N,每个数字出现两次.现在用一条曲线将一对相同的 ...

  3. AtCoder ARC 076D - Built?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_b 本题是一个图论问题——Manhattan距离最小生成树(MST). 在一个平面网格上有n个格点, ...

  4. AtCoder ARC 082E - ConvexScore

    传送门:http://arc082.contest.atcoder.jp/tasks/arc082_c 本题是一个平面几何问题. 在平面直角坐标系中有一个n元点集U={Ai(xi,yi)|1≤i≤n} ...

  5. Atcoder ARC 082C/D

    C - Together 传送门:http://arc082.contest.atcoder.jp/tasks/arc082_a 本题是一个数学问题. 有一个长度为n的自然数列a[1..n],对于每一 ...

  6. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  7. 【题解】Atcoder ARC#96 F-Sweet Alchemy

    首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...

  8. AtCoder ARC 090 E / AtCoder 3883: Avoiding Collision

    题目传送门:ARC090E. 题意简述: 给定一张有 \(N\) 个点 \(M\) 条边的无向图.每条边有相应的边权,边权是正整数. 小 A 要从结点 \(S\) 走到结点 \(T\) ,而小 B 则 ...

  9. ARC 058

    所以为啥要写来着........... 链接 T1 直接枚举大于等于$n$的所有数,暴力分解判断即可 复杂度$O(10n \log n)$ #include <cstdio> #inclu ...

  10. 【题解】Atcoder ARC#67 F-Yakiniku Restaurants

    觉得我的解法好简单,好优美啊QAQ 首先想想暴力怎么办.暴力的话,我们就枚举左右端点,然后显然每张购物券都取最大的值.这样的复杂度是 \(O(n ^{2} m)\) 的.但是这样明显能够感觉到我们重复 ...

随机推荐

  1. Hexo添加Live2D看板娘+模型预览

    文章目录 添加和注意事项 模型预览 live2d-widget-model-chitose live2d-widget-model-epsilon2_1 live2d-widget-model-gf ...

  2. Flink 实践教程-进阶(5):排序(乱序调整)

    作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接.亚 ...

  3. static,final,volatile

    static  静态修饰关键字,可以修饰 变量,程序块,类的方法:[被 static 修饰的方法和属性只属于类不属于类的任何对象.] 当你定义一个static的变量的时候jvm会将将其分配在内存堆上, ...

  4. 物联网大赛 - Android学习笔记(一) Android概念

    一.Android 概念 Android是开放式的手机和电脑操作系统,是基于Linux系统做的上层开发. android可以做些什么? Android可以开发各种手机应用APP,也可以开发车载系统等, ...

  5. Java基础(八)——IO流3_对象流

    一.对象流 1.序列化与反序列化 序列化:将内存中的Java对象保存到磁盘中或通过网络传输出去. 反序列化:将磁盘文件中的对象还原为内存中的一个Java对象. 用途: (1)将对象保存到物理硬盘:比如 ...

  6. APICloud超实用经验分享——平台功能

    从2016年开始使用APICloud进行app项目开发,到现在也有五六年了.在此过程中伴随着APICloud一起成长,踩过一些坑,自己的技术也提升不少.在APICloud 推出avm框架一年之后,ID ...

  7. Flutter 让你的Dialog脱胎换骨吧!(Attach,Dialog,Loading,Toast)

    前言 Q:你一生中闻过最臭的东西,是什么? A:我那早已腐烂的梦. 兄弟萌!!!我又来了! 这次,我能自信的对大家说:我终于给大家带了一个,能真正帮助大家解决诸多坑比场景的pub包! 将之前的flut ...

  8. Flask + UnitTest(十五)

    被测试视图 # coding:utf-8 from flask import Flask, request, jsonify app = Flask(__name__) @app.route(&quo ...

  9. Visual Studio Code快速补全html标签(Sublime同样支持)

    1.生成html文件骨架 输入"!" 或 "html:5",按tab键 注意:编写中文网页,记得把头部语言<html lang="en" ...

  10. python安装第三方库的步骤

    windows下举例:1.下载openpyxl,http://pypi.doubanio.com/simple/openpyxl/2.将下载后的文件解压放到Python文件夹下的Lib文件夹下3.cm ...