Atcoder ARC-058
ARC058(2020.7.4)
A
从高到低依次填入能填的最小值即可。
B
首先可以发现这个区间实际上只有横着的一条边有用,那么我们可以在边界上枚举中转点使得不经过非法区域即可。
C
挺神的一道题。首先我们会发现如果直接算出合法序列非常不好做,因为可能一个合法序列中可能有多个满足条件的句子,那么很难设计一种状态不会记重,那么我们考虑容斥,算出不合法的序列。我们发现我们需要关注的实际上是原序列中的一段子串,并且需要判断该子串是否能能形成满足条件的句子,事实上这里的子串长度不会超过 \(X + Y + Z \le 17\) 于是我们可以考虑 \(dp\),令 \(dp_{i, j, k, \cdots}\) 为到第 \(i\) 为位置,最后 \(17\) 位分别为 \(j, k, \cdots\) 的总共不合法序列,首先与处理一下每个子串是否合法就可以做到 \(O(n 10 ^ {X + Y + Z})\)。现在我们考虑这样一个表示法,比如我们将 \(2\) 表示成 \(10\),将 \(4\) 表示成 \(1000\) 即将 \(x\) 表示成 \(1000\cdots\) 后面 \(x - 1\) 个 \(0\) 的形式,那么两个数加起来比如 \(2 + 4 = 101000\) 倒数第 \(6\) 位就变成了 \(1\),那么对于任意一个二进制串如果他在倒数 \(X + Y + Z, Y + Z, Z\) 的位置上为 \(1\) 那么这个子串就一定是一个满足条件的句子。换种说法,对于一个二进制串 \(S\),和答案串即只有倒数 \(X + Y + Z, Y + Z, Z\) 的位置上为 \(1\) 的串 \(Ans\) 满足 \(S \& Ans = Ans\) 那么 \(S\) 就是一个满足条件的子串。那么现在我们就可以将 \(dp\) 的最后暴力枚举的位置改成这样的状压的形式,再去看我们关心的最后 \(X + Y + Z\) 个位置,实际上就是二进制串下的最后 \(X + Y + Z\) 个位置,那么我们只需要记录最后 \(X + Y + Z\) 的答案即可,于是复杂度变成了 \(O(n 2 ^ {X + Y + Z})\).
D
字符串,咕咕咕....
Atcoder ARC-058的更多相关文章
- 【题解】Atcoder ARC#90 F-Number of Digits
Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...
- AtCoder ARC 076E - Connected?
传送门:http://arc076.contest.atcoder.jp/tasks/arc076_c 平面上有一个R×C的网格,格点上可能写有数字1~N,每个数字出现两次.现在用一条曲线将一对相同的 ...
- AtCoder ARC 076D - Built?
传送门:http://arc076.contest.atcoder.jp/tasks/arc076_b 本题是一个图论问题——Manhattan距离最小生成树(MST). 在一个平面网格上有n个格点, ...
- AtCoder ARC 082E - ConvexScore
传送门:http://arc082.contest.atcoder.jp/tasks/arc082_c 本题是一个平面几何问题. 在平面直角坐标系中有一个n元点集U={Ai(xi,yi)|1≤i≤n} ...
- Atcoder ARC 082C/D
C - Together 传送门:http://arc082.contest.atcoder.jp/tasks/arc082_a 本题是一个数学问题. 有一个长度为n的自然数列a[1..n],对于每一 ...
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- 【题解】Atcoder ARC#96 F-Sweet Alchemy
首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...
- AtCoder ARC 090 E / AtCoder 3883: Avoiding Collision
题目传送门:ARC090E. 题意简述: 给定一张有 \(N\) 个点 \(M\) 条边的无向图.每条边有相应的边权,边权是正整数. 小 A 要从结点 \(S\) 走到结点 \(T\) ,而小 B 则 ...
- ARC 058
所以为啥要写来着........... 链接 T1 直接枚举大于等于$n$的所有数,暴力分解判断即可 复杂度$O(10n \log n)$ #include <cstdio> #inclu ...
- 【题解】Atcoder ARC#67 F-Yakiniku Restaurants
觉得我的解法好简单,好优美啊QAQ 首先想想暴力怎么办.暴力的话,我们就枚举左右端点,然后显然每张购物券都取最大的值.这样的复杂度是 \(O(n ^{2} m)\) 的.但是这样明显能够感觉到我们重复 ...
随机推荐
- ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD
目录 概 主要内容 least likely class adv. 实验1 l.l.c. adv.的效用 实验二 Alexey Kurakin, Ian J. Goodfellow, Samy Ben ...
- Going Deeper with Convolutions (GoogLeNet)
目录 代码 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. computer vision and pattern ...
- Ranger-AdminServer安装Version2.0.0
Ranger-AdminServer安装, 对应的Ranger版本2.0.0. 1.安装规划 RangerAdmin安装依赖如下组件: mysql solr IP/机器名 安装软件 运行进程 dap2 ...
- 游戏中的自动寻路-A*算法(第一版优化——走斜线篇)
一.简述以及地图 G 表示从起点移动到网格上指定方格的移动距离 (暂时不考虑沿斜向移动,只考虑上下左右移动). H 表示从指定的方格移动到终点的预计移动距离,只计算直线距离,走直角篇走的是直角路线. ...
- Linux上天之路(四)之Linux界面介绍
Linux界面 linux为使用者提供了图形界面和文本界面,但是很多操作依然需要文本界面的操作才能完成,很多人使用起来比较蹩脚,又因为linux平台的个人应用APP相对较少,使得大家的个人PC安装了l ...
- Word2010制作电子印章
原文链接: https://www.toutiao.com/i6488971642788643341/ 选择"插入"选项卡,"插图"功能组,"形状&q ...
- Kubernetes 中的 Pod 安全策略
来源:伪架构师作者:崔秀龙很多人分不清 SecurityContext 和 PodSecurityPolicy 这两个关键字的差别,其实很简单:•SecurityContext 是 Pod 中的一个字 ...
- 原生twig模板引擎详解(安装使用)
最近在学习SSTI(服务器模板注入),所以在此总结一下 0x00 Twig的介绍 什么是Twig? Twig是一款灵活.快速.安全的PHP模板引擎. Twig的特点? 快速:Twig将模板编译为纯粹的 ...
- MySQL提权之udf提权(无webshell的情况)
0x00 介绍 本篇我们来讲无webshell时利用udf进行提权 0x01 前提 1. 必须是root权限(主要是得创建和抛弃自定义函数) 2. secure_file_priv=(未写路径) 3. ...
- Redisson-关于使用订阅数问题
一.前提 最近在使用分布式锁redisson时遇到一个线上问题:发现是subscriptionsPerConnection or subscriptionConnectionPoolSize 的大小不 ...