Source: Brain voyager support

Theoretical Background

Spatial smoothing means that data points are averaged with their neighbours. This has the effect of a low pass filter meaning that high frequencies of the signal are removed from the data while enhancing low frequencies. The result is that sharp "edges" of the images are blurred and spatial correlation within the data is more pronounced (see figure below).

Effect Of Smoothing

The approach of spatial smoothing is commonly used in fMRI studies and is justified by the fact that fMRI data inherently show spatial correlations due to functional similarities of adjacent brain regions and the blurring of the vascular system.

The standard procedure of spatial smoothing is employed by convolving the fMRI signal with a Gaussian function of a specific width.This so called Gaussian kernel is a kernel with the shape of a normal distribution curve. In the figure below you can see a standard Gaussian with a mean of 0 and a standard deviation of 1.

Standard Gaussian

The size of the Gaussian kernel defines the "width" of the curve which determines in turn how much the data is smoothed. The width is not expressed in terms of the standard deviation σ, as customary in statistics, but with the Full Width at Half Maximum (FWHM). In this case the FWHM would be 2.35: The maximum of this curve is y = 0.4 at x = 0. The half maximum is y = 0.2 at x = -1.175 and at x = 1.175. Therefore, the full width of the curve at the point of the half maximum is about 2.35. Nevertheless, the FWHM is also related to the standard deviation σ as follows: FWHM = σ √(8 ln(2)).

Benefits

  • Improvement of the signal to noise ratio (SNR) => Increasing sensitivity

    According to the matched filter theorem, the SNR reaches its maximum when the filter width matches the expected signal width. This, in turn, is of course dependent on the experimental design and the functional brain areas under investigation, e.g. Do you expect a narrow signal in the thalamus versus more extensive activations in the occipital lobe? Therefore, if a signal with a FWHM of 8 mm is expected the applied kernel size should be 8 mm as well.

  • Improving validity of the statistical tests by making the error distribution more normal

    Most parametric tests assume normal error distributions and according to the central limit theorem the distribution of an average tends to be normal with a sufficiently large number of independent observations being averaged.

  • Accommodation of anatomical and functional variations between subjects

    In multi-subject studies, individual brains are coregistered to each other to establish spatial correspondence between the different brains. Still, because of the substantial variation in individual brains, activated areas are rarely represented in exactly the same voxels. To increase the overlap of activated brain regions across subjects smoothing can be applied.

Drawbacks

  • Reduction of spatial resolution of the data

    Spatial smoothing results always in reduced spatial resolution of the data. Therefore, it is important to decide whether a precise localization of the activations is important. However, even worse, if the filter width is set too small, there is practically no positive effect on the SNR while the spatial resolution is reduced.

  • Edge Artifacts

    Along the edges of the brain, brain voxels are smoothed with non-brain voxels, resulting in a dark ring around the brain which might be mistaken for hypoactivity.

  • Merging

    If activation peaks are less than twice the FWHM apart they are detected as a single activation rather than two separated ones.

  • Extinction

    If the filter width is set too large, especially small meaningful activations might be attenuated below the significance threshold.

  • Mislocalization of activation peaks

    As presented by Mikl and colleagues (2008) spatial smoothing almost unavoidably results in shifts of activation peaks. Therefore, as already mentioned above, it is crucial to decide what amount of spatial accuracy is required.

fMRI: spatial smoothing的更多相关文章

  1. Smoothing in fMRI analysis (FAQ)

    Source: http://mindhive.mit.edu/node/112 1. What is smoothing? "Smoothing" is generally us ...

  2. fsl的feat软件分包使用笔记

    introduction: 1. feat 是一种基于模型的fmri数据分析方法. 2. feat 首先使用顺手,至少看起来,比spm漂亮多了. feat是按照正常人的使用方法去设计的. spm 由于 ...

  3. 详解卷积神经网络(CNN)在语音识别中的应用

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老 ...

  4. 卷积神经网络(CNN)在语音识别中的应用

    前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neur ...

  5. 对抗防御之对抗样本检测(一):Feature Squeezing

    引言 在之前的文章中,我们介绍了对抗样本和对抗攻击的方法.在该系列文章中,我们介绍一种对抗样本防御的策略--对抗样本检测,可以通过检测对抗样本来强化DNN模型.本篇文章论述其中一种方法:feature ...

  6. How Do Vision Transformers Work?[2202.06709] - 论文研读系列(2) 个人笔记

    [论文简析]How Do Vision Transformers Work?[2202.06709] 论文题目:How Do Vision Transformers Work? 论文地址:http:/ ...

  7. fmri降噪,利用spatial+temporal信息

    1.基于小波+高斯模型 <SPATIOTEMPORAL DENOISING AND CLUSTERING OF FMRI DATA>

  8. SMOOTHING (LOWPASS) SPATIAL FILTERS

    目录 FILTERS Box Filter Kernels Lowpass Gaussian Filter Kernels Order-Statistic (Nonlinear) Filters Go ...

  9. 在fmri研究中,cca的应用历史

    1.02年ola是第一个应用cca在fmri激活检测上的学者. <exploratory fmri analysis by autocorrelation maximization> 2. ...

随机推荐

  1. [moka同学转载]Yii2 checkBookList的使用

    use yii\helpers\Html; use yii\helpers\ArrayHelper model层代码 $model = new Model()//要存储的model $aclb = A ...

  2. jQueryMobile示例页面代码

    这是一个jQueryMobile示例页面 示例效果:http://hovertree.com/texiao/jquerymobile/ 可以在手机或者触屏浏览器查看效果. 以下是HTML代码: < ...

  3. H5学习

    1.html{font-size:62.5%;}//不用font-size:10px的原因:(因为设了62.5%后就有1rem = 10px,便于用rem来指定元素的尺寸,这样响应式的时候可以直接改变 ...

  4. docker中建立私有git服务器[gitlab]

    现在使用git的很普遍,在开发内部如何建立个git服务器,本文以gitlab为例,让你分分钟就可以搭好一个环境[docker的威力非同一般] 首先在docker.com找到gitlab的下载源和信息, ...

  5. UITableview中怎么找到每个cell

    一个朋友问我:我在每个cell中都添加了两个按钮(记为btnA和btnB),点击btnA时,对应的cell中添加一个子控件,再点击btnB时,对应的cell中的子控件就移除,怎么做到? 百度了一下,发 ...

  6. 【Swift】UITableViewCell 中 TTTAttributedLabel 超链接无法点击的问题

    前言 还以为是自己代码写的有问题,用法和别的地方都一样,但是这个是在 UITableViewCell 中使用,另外在 tableHeaderView 中使用也没用这个问题 —— 使用 TTTAttri ...

  7. 如何在 ASP.NET 4.6 与 IIS10 中运用 HTTP/2 ?

    在过去十年中,Web 技术已经取得了种种进展.从基本的 HTML 开始,网页发展出更丰富的外观和感觉,变得更加直观,对用户更加友好并且越来越大放异彩.这些变化的关键贡献来自于一些新的和翻新技术,且借力 ...

  8. ORA-12523: TNS: 监听程序无法找到适用于客户机连接的例程

    今天使用PL/SQL Developer连接到一台新的测试服务器时,遇到ORA错误:ORA-12523: TNS: 监听程序无法找到适用于客户机连接的例程.对应的监听日志文件里面错误为TNS-1252 ...

  9. Linux NetHogs监控工具介绍

    NetHogs介绍 NetHogs是一款开源.免费的,终端下的网络流量监控工具,它可监控Linux的进程或应用程序的网络流量.NetHogs只能实时监控进程的网络带宽占用情况.NetHogs支持IPv ...

  10. 在Ubuntu上单机安装Hadoop

    最近大数据比较火,所以也想学习一下,所以在虚拟机安装Ubuntu Server,然后安装Hadoop. 以下是安装步骤: 1. 安装Java 如果是新机器,默认没有安装java,运行java –ver ...