\(考虑问题的转换,即把用n个球,分为r-l+2个部分,其中第1部分表示该区域的球值为l,第二部分表示该区域的球值为l+1\)

\(......第r-l+2部分为不选该区域的球\)

\(该问题等价于在n+1个空中插r-l+1块板,其中一个空可以插多个也可以不插\)

\(方案数即为\binom{r-l+n+1}{n}\)

\(但长度为1-n,因此要减去所有板都在1的情况,即为\binom{r-l+n+1}{n}-1\)

\(当然,n,r,l很大,因此要用Lucas定理\)

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1100050;
const int MOD=1e6+3;
int cnt;
long long Pow(int a, int b, int p) {
long long ans = 1;
long long base = a;
base %= p; while (b) {
if (b & 1) {
ans *= base;
ans %= p;
} base *= base;
base %= p;
b >>= 1;
} return ans;
}
long long inv(int a, int p) {
return Pow(a, p - 2, p);
}
long long fac[MAXN], inv_fac[MAXN];
long long C(long long n, long long m) {
if (m < 0) {
return 0;
}
if (n < m) {
return 0;
}
if (m == 0||n==m)
return 1; long long k = fac[n];
long long ans = k * inv(fac[n - m],MOD);
ans %= MOD;
ans = ans * inv(fac[m],MOD);
ans %= MOD;
return ans;
}
long long Lucas(int n,int m)
{
if(!m)
{
return 1;
}
return C(n%MOD,m%MOD)*Lucas(n/MOD,m/MOD)%MOD;
}
int t;
long long n,l,r; signed main() {
fac[0] = 1;
for (int i = 1; i <= MOD-1; i++) {
fac[i] = fac[i - 1] * i;
fac[i] %= MOD;
}
scanf("%lld",&t);
while(t--)
{
scanf("%lld %lld %lld",&n,&l,&r);
printf("%lld\n",(Lucas(r-l+n+1,n)-1+MOD)%MOD);
}
}

Count Sequences的更多相关文章

  1. 算法 - 求和为n的连续正整数序列(C++)

    //************************************************************************************************** ...

  2. CRT/LCD/VGA Information and Timing

    彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for red, green, and blue phosphor dots)2. 电子束 Electron ...

  3. CRT/LCD/VGA Information and Timing【转】

    转自:http://www.cnblogs.com/shangdawei/p/4760933.html 彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for ...

  4. Linux command line exercises for NGS data processing

    by Umer Zeeshan Ijaz The purpose of this tutorial is to introduce students to the frequently used to ...

  5. nodejs api 中文文档

    文档首页 英文版文档 本作品采用知识共享署名-非商业性使用 3.0 未本地化版本许可协议进行许可. Node.js v0.10.18 手册 & 文档 索引 | 在单一页面中浏览 | JSON格 ...

  6. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  7. Python数据类型之“序列概述与基本序列类型(Basic Sequences)”

    序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主要以下几种类型: 3种基本序列类型(Basic Sequence Types):list. ...

  8. 【leetcode】Repeated DNA Sequences(middle)★

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  9. Codeforces Round #167 (Div. 2) D. Dima and Two Sequences 排列组合

    题目链接: http://codeforces.com/problemset/problem/272/D D. Dima and Two Sequences time limit per test2 ...

随机推荐

  1. Spring是如何保证同一事务获取同一个Connection的?使用Spring的事务同步机制解决:数据库刚插入的记录却查询不到的问题(转)

    前言 关于Spring的事务,它是Spring Framework中极其重要的一块.前面用了大量的篇幅从应用层面.原理层面进行了比较全方位的一个讲解.但是因为它过于重要,所以本文继续做补充内容:Spr ...

  2. Thymeleaf标准表达式

    Thymeleaf的官网为: http://www.thymeleaf.org/ 一.变量表达式${-} 使用${-}括起来的表达式,称为变量表达式.该表达式的内容会显示在HTML标签体文本处. 该表 ...

  3. Git初始化及仓库创建和操作

    一.基本信息配置 1.全局配置用户名 git config --global user.name "YeHuan-byte" 2.全局配置邮箱 git config --globa ...

  4. JVM堆空间结构及常用的jvm内存分析命令和工具

    jdk8之前的运行时数据区域 程序计数器 是一块较小的内存空间,它可以看做是当前线程所执行的字节码的行号指示器.每个线程都有一个独立的程序计数器,这类内存区域为"线程私有",此内存 ...

  5. 【简】题解 AWSL090429 【价值】

    先考虑当要选的物品一定时 显然有个贪心 wi越小的要越先选 所以先按wi从小到大拍序 因为发现正着递推要记录的状态很多 并且wi的贡献与后面选了几个物品有关 考虑正难则反 倒着递推 提前计算wi的贡献 ...

  6. Git remote 远程仓库链接管理

    SVN 使用单个集中仓库作为开发人员的通信枢纽,通过在开发人员的工作副本和中央仓库之间传递变更集来进行协作. 这与 Git 的分布式协作模型不同,后者为每个开发人员提供了自己的仓库副本,并具有自己的本 ...

  7. 使用Azure Functions & .NET Core快速构建Serverless应用

    Code Repo: https://github.com/Asinta/ServerlessApp_NetconfChina2020 Prerequisites Visual Studio Code ...

  8. Landsat 现有 Analysis Ready Data (ARD) 数据介绍

    Global Web-Enabled Landsat Data (GWELD)[1] NASA 原先的 Web-Enabled Landsat Data Conterminous U.S. Seaso ...

  9. 30个类手写Spring核心原理之动态数据源切换(8)

    本文节选自<Spring 5核心原理> 阅读本文之前,请先阅读以下内容: 30个类手写Spring核心原理之自定义ORM(上)(6) 30个类手写Spring核心原理之自定义ORM(下)( ...

  10. 极简!一个注解就能创建Jaeger的Span

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...