作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/largest-perimeter-triangle/

题目描述

Given an array A of positive lengths, return the largest perimeter of a triangle with non-zero area, formed from 3 of these lengths.

If it is impossible to form any triangle of non-zero area, return 0.

Example 1:

Input: [2,1,2]
Output: 5

Example 2:

Input: [1,2,1]
Output: 0

Example 3:

Input: [3,2,3,4]
Output: 10

Example 4:

Input: [3,6,2,3]
Output: 8

Note:

  1. 3 <= A.length <= 10000
  2. 1 <= A[i] <= 10^6

题目大意

从一个数组中选择3条边构成三角形,求该三角形最大的周长。

解题方法

排序

首先,我们肯定需要排序的,这个不解释。

假设排序完成之后的数组为[a, b, c, d, e, f],其中a <= b <= c <= d <= e <= f.为了尽可能构成周长最大的三角形,我们从右向左进行遍历。只需要对连续的三条边进行判断即可找出周长最大的三角形。理由如下。

抽出三条边,假设为d,e,f,那么这三条边组成三角形的充分条件是d + e > f。下面进行证明:

对于任意三条边,能组成三角形的充分条件是两边之和大于第三边,两边之差小于第三边。由于d <= e <= f,显然有e + f > d,d + f > e。又d + e > f,则满足任意两边之和大于第三边。由于d <= e <= f,则e - d < f。又d + e > f,则f - e < d, f - d < e,则满足任意两边只差小于第三边。所以,当d + e > f时能够成三角形。

下面证明选取的次大边和最大边必须相邻,即如果最大边选择f,则次大边必须选择e。由d + e > f知, 最大边 - 次大边 < 最小边。当我们次大边选择e时,假如最小边无论如何选择不能构成三角形,即target = f - e > d。那么,次大边选择更小的数字时,target会更大,仍然有target = f - d > f - e > d > c。总之,如果当次大边选择和最大边相邻时,如果不能构成三角形,则次大边和最大边不相邻,更不能构成三角形。

再下面证明,最小边必须和次大边必须相邻,即如果最大边选择f、次大边选择e时,最小边必须选择d。这个很好证明,由于d + e > f,即target = f - e < 最小边,我们肯定只能在满足该条件的边中选择最大的,才能使得构成三角形的周长最大。而数组是已经排了序的,所以,最小边选择d时,要么不能构成三角形,要么就构成在最大边和次大边为f,e时周长最大的三角形。

综上,在排序了的数组中选择三条边构成最大周长的三角形的充分条件是,三条边必须连续选择,且尽可能选择最大的边。

python代码如下:

class Solution(object):
def largestPerimeter(self, A):
"""
:type A: List[int]
:rtype: int
"""
A.sort()
N = len(A)
res = 0
# A[i - 2], A[i - 1], A[i]
for i in range(N - 1, 1, -1):
if A[i - 2] + A[i - 1] > A[i]:
return A[i - 2] + A[i - 1] + A[i]
return 0

日期

2019 年 1 月 13 日 —— 时间太快了

【LeetCode】976. Largest Perimeter Triangle 解题报告(Python)的更多相关文章

  1. LeetCode 976 Largest Perimeter Triangle 解题报告

    题目要求 Given an array A of positive lengths, return the largest perimeter of a triangle with non-zero ...

  2. LeetCode 976. Largest Perimeter Triangle (三角形的最大周长)

    题目标签:Array 题目给了我们一个 边长的 array, 让我们找出 最大边长和的三角形,当然前提得是这三条边能组成三角形.如果array 里得边长组成不了三角形,返回0. 最直接的理解就是,找到 ...

  3. Leetcode 976. Largest Perimeter Triangle

    送分题 class Solution(object): def largestPerimeter(self, A): """ :type A: List[int] :rt ...

  4. 【Leetcode_easy】976. Largest Perimeter Triangle

    problem 976. Largest Perimeter Triangle solution: class Solution { public: int largestPerimeter(vect ...

  5. 【leetcode】976. Largest Perimeter Triangle

    题目如下: Given an array A of positive lengths, return the largest perimeter of a triangle with non-zero ...

  6. 976. Largest Perimeter Triangle

    Given an array A of positive lengths, return the largest perimeter of a triangle with non-zero area, ...

  7. 「Leetcode」976. Largest Perimeter Triangle(C++)

    分析 好久不刷题真的思维僵化,要考虑到这样一个结论:如果递增的三个数\(x_i,x_{i+1},x_{i+2}\)不符合题意,那么最大的两边之差一定大于等于第一条边,那么任何比第一条边小的都不能成立. ...

  8. 【LeetCode】62. Unique Paths 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...

  9. LeetCode 976. 三角形的最大周长(Largest Perimeter Triangle) 33

    976. 三角形的最大周长 976. Largest Perimeter Triangle 题目描述 给定由一些正数(代表长度)组成的数组 A,返回由其中三个长度组成的.面积不为零的三角形的最大周长. ...

随机推荐

  1. WSL + MobaXterm 取代虚拟机

    windows子系统安装默认C盘,这里我们直接下载安装文件安装在我们指定的目录. 1.先去官方网站下载安装文件:https://docs.microsoft.com/zh-cn/windows/wsl ...

  2. 嵌入式Linux利用ppp实现4G模块联网

    https://blog.csdn.net/qq361294382/article/details/52136126 https://blog.csdn.net/qq361294382/article ...

  3. 【模板】网络最大流(EK、Dinic、ISAP)(网络流)/洛谷P3376

    题目链接 https://www.luogu.com.cn/problem/P3376 题目大意 输入格式 第一行包含四个正整数 \(n,m,s,t\),分别表示点的个数.有向边的个数.源点序号.汇点 ...

  4. day02 MySQL基本操作

    day02 MySQL基本操作 昨日内容回顾 数据库演变史 1.纯文件阶段 2.目录规范 3.单机游戏 4.联网游戏 # 数据库就是一款帮助我们管理数据的程序 软件开发架构及数据库本质 cs架构与bs ...

  5. Spark中的分区方法详解

    转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilien ...

  6. 商业爬虫学习笔记day5

    一. 发送post请求 import requests url = "" # 发送post请求 data = { } response = requests.post(url, d ...

  7. h5移动端设备像素比dpr介绍

    首先介绍一下概念 devicePixelRatio其实指的是window.devicePixelRatio window.devicePixelRatio是设备上物理像素和设备独立像素(device- ...

  8. Oracle LOB类型

    一.Oracle中的varchar2类型1.我们在Oracle数据库存储的字符数据一般是用VARCHAR2.VARCHAR2既分PL/SQL Data Types中的变量类型,也分Oracle Dat ...

  9. Advanced C++ | Virtual Copy Constructor

    这个不懂,等看会了再写...

  10. 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

    上期的<全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础>中介绍了什么是AQS,以及AQS的基本结构.有了这些概念做铺垫之后,我们就可以正 ...