Solution -「USACO 2020.12 P」Sleeping Cows
\(\mathcal{Description}\)
Link.
有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小于自己的牛棚,每个牛棚最多住一头奶牛。求满足不能让更多奶牛住进牛棚的安排方案数,答案对 \((10^9+7)\) 取模。
\(n\le3\times10^3\)。
\(\mathcal{Solution}\)
把 \(s\) 和 \(t\) 倒一块儿升序排序,大小相同奶牛优先。那么相当于奶牛只能住进自己后面的某个房间,转化成了熟悉的括号问题。
考虑一个方案合法的条件:最左侧失配的左括号(奶牛)在最右侧失配的右括号(牛棚)右侧(否则它们就能够再匹配了)。
接下来的 DP 就比较平凡啦,令 \(f(i,j,0/1)\) 表示考虑了序列前 \(i\) 个元素,有 \(j\) 个左括号预定了接下来的右括号和它匹配,出现 / 未出现“最左侧失配的左括号”时的方案数。分第 \(i\) 个位置是奶牛还是牛棚转移(\(\longleftarrow\) 表示前者被后者贡献):
- 奶牛转移:
- 预定后方房间,\(f(i,j,0/1)\longleftarrow f(i-1,j-1,0/1)\);
- 成为最左侧失配,\(f(i,j,1)\longleftarrow f(i-1,j,0)\);
- 再次失配,\(f(i,j,1)\longleftarrow f(i-1,j,1)\)。
- 牛棚转移:
- 去满足某个房间预定,\(f(i,j,0/1)\longleftarrow (j+1)\cdot f(i-1,j+1,0/1)\);
- 失配,\(f(i,j,0)\longleftarrow f(i-1,j,0)\)。
转移最后一步体现了合法限制。最后答案显然是 \(f(2n,0,0)+f(2n,0,1)\)。
最终,\(\mathcal O(n^2)\) 解决问题。
\(\mathcal{Code}\)
代码中最后一维 \(0/1\) 状态是反过来的 awa。
/* Clearink */
#include <cstdio>
#include <algorithm>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
typedef std::pair<int, int> PII;
#define fi first
#define se second
const int MAXN = 3e3, MOD = 1e9 + 7;
int n, f[MAXN * 2 + 5][MAXN + 5][2]; // !!!
PII s[MAXN * 2 + 5];
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
int main() {
// freopen ( "sleeping.in", "r", stdin );
// freopen ( "sleeping.out", "w", stdout );
scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &s[i].fi ), s[i].se = 0;
rep ( i, n + 1, n << 1 ) scanf( "%d", &s[i].fi ), s[i].se = 1;
std::sort( s + 1, s + ( n << 1 | 1 ) );
f[0][0][1] = 1;
rep ( i, 1, n << 1 ) {
if ( !s[i].se ) rep ( j, 0, n ) { // cow.
if ( j ) {
addeq( f[i][j][1], f[i - 1][j - 1][1] );
addeq( f[i][j][0], f[i - 1][j - 1][0] );
}
addeq( f[i][j][0], add( f[i - 1][j][0], f[i - 1][j][1] ) );
} else rep ( j, 0, n ) { // house.
f[i][j][0] = mul( j + 1, f[i - 1][j + 1][0] );
f[i][j][1] = add( mul( j + 1, f[i - 1][j + 1][1] ),
f[i - 1][j][1] );
}
}
printf( "%d\n", add( f[n << 1][0][0], f[n << 1][0][1] ) );
return 0;
}
Solution -「USACO 2020.12 P」Sleeping Cows的更多相关文章
- Solution -「USACO 2020.12 P」Spaceship
\(\mathcal{Description}\) Link. Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态 ...
- Solution -「SV 2020 Round I」SA
\(\mathcal{Description}\) 求出处 owo. 给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...
- Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits
\(\mathcal{Description}\) link. 给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一 ...
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
- Solution -「2020.12.26」 模拟赛
0x00 前言 一些吐槽. 考得很变态诶,看每道题平均两秒的时限就知道了... T1 降智了想到后缀懒得打. T2 口胡了假优化,结果和暴力分一样?? T3 黑题还绑点?? \(50 + 80 + 0 ...
- Solution -「ZJOI 2020」「洛谷 P6631」序列
\(\mathcal{Description}\) Link. 给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...
- Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthon ...
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- Solution -「FJWC 2020」人生
\(\mathcal{Description}\) OurOJ. 有 \(n\) 个结点,一些结点有染有黑色或白色,其余待染色.将 \(n\) 个结点染上颜色并连接有向边,求有多少个不同(结点 ...
随机推荐
- spring controller获取web前端post数据乱码解决
web.xml文件加上如下代码<!-- post请求乱码拦截器 --><filter> <filter-name>CharacterEncodingFilter&l ...
- web.xml文件配置模板
直接贴完整代码,当然,spring的核心控制器依赖包需要通过mean提前配置 <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.// ...
- react中使用immutable
官方文档(https://immutable-js.github.io/immutable-js/docs/#/) 有人说 Immutable 可以给 React 应用带来数十倍的提升,也有人说 Im ...
- Linux上天之路(十七)之Shell编程二
一.shell常用工具 grep 1.作用 Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来.grep全称是Global Regular Exp ...
- 联盛德 HLK-W806 (十三): 运行FatFs读写FAT和exFat格式的SD卡/TF卡
目录 联盛德 HLK-W806 (一): Ubuntu20.04下的开发环境配置, 编译和烧录说明 联盛德 HLK-W806 (二): Win10下的开发环境配置, 编译和烧录说明 联盛德 HLK-W ...
- Go Error 嵌套到底是怎么实现的?
原文链接: Go Error 嵌套到底是怎么实现的? Go Error 的设计哲学是 「Errors Are Values」. 这句话应该怎么理解呢?翻译起来挺难的.不过从源码的角度来看,好像更容易理 ...
- ecos matlab版本安装
官网链接 github地址 1.注意不仅要下载matlab版本,同时还要下载c版本,因为matlab版本缺少第三方软件,将两个版本解压缩后将c版本下的文件夹external,ecos_bb,inclu ...
- 【刷题-LeetCode】228. Summary Ranges
Summary Ranges Given a sorted integer array without duplicates, return the summary of its ranges. Ex ...
- Cesium入门12 - Camera Modes - 相机模式
Cesium入门12 - Camera Modes - 相机模式 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ ...
- Python中的路径
转义 windows路径使用的是\,linux路径使用的是/. 特别的,在windows系统中如果有这样的一个路径 D:\nxxx\txxx\x1,程序会报错.因为在路径中存在特殊符 \n(换行符)和 ...