Solution -「USACO 2020.12 P」Sleeping Cows
\(\mathcal{Description}\)
Link.
有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小于自己的牛棚,每个牛棚最多住一头奶牛。求满足不能让更多奶牛住进牛棚的安排方案数,答案对 \((10^9+7)\) 取模。
\(n\le3\times10^3\)。
\(\mathcal{Solution}\)
把 \(s\) 和 \(t\) 倒一块儿升序排序,大小相同奶牛优先。那么相当于奶牛只能住进自己后面的某个房间,转化成了熟悉的括号问题。
考虑一个方案合法的条件:最左侧失配的左括号(奶牛)在最右侧失配的右括号(牛棚)右侧(否则它们就能够再匹配了)。
接下来的 DP 就比较平凡啦,令 \(f(i,j,0/1)\) 表示考虑了序列前 \(i\) 个元素,有 \(j\) 个左括号预定了接下来的右括号和它匹配,出现 / 未出现“最左侧失配的左括号”时的方案数。分第 \(i\) 个位置是奶牛还是牛棚转移(\(\longleftarrow\) 表示前者被后者贡献):
- 奶牛转移:
- 预定后方房间,\(f(i,j,0/1)\longleftarrow f(i-1,j-1,0/1)\);
- 成为最左侧失配,\(f(i,j,1)\longleftarrow f(i-1,j,0)\);
- 再次失配,\(f(i,j,1)\longleftarrow f(i-1,j,1)\)。
- 牛棚转移:
- 去满足某个房间预定,\(f(i,j,0/1)\longleftarrow (j+1)\cdot f(i-1,j+1,0/1)\);
- 失配,\(f(i,j,0)\longleftarrow f(i-1,j,0)\)。
转移最后一步体现了合法限制。最后答案显然是 \(f(2n,0,0)+f(2n,0,1)\)。
最终,\(\mathcal O(n^2)\) 解决问题。
\(\mathcal{Code}\)
代码中最后一维 \(0/1\) 状态是反过来的 awa。
/* Clearink */
#include <cstdio>
#include <algorithm>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
typedef std::pair<int, int> PII;
#define fi first
#define se second
const int MAXN = 3e3, MOD = 1e9 + 7;
int n, f[MAXN * 2 + 5][MAXN + 5][2]; // !!!
PII s[MAXN * 2 + 5];
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
int main() {
// freopen ( "sleeping.in", "r", stdin );
// freopen ( "sleeping.out", "w", stdout );
scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &s[i].fi ), s[i].se = 0;
rep ( i, n + 1, n << 1 ) scanf( "%d", &s[i].fi ), s[i].se = 1;
std::sort( s + 1, s + ( n << 1 | 1 ) );
f[0][0][1] = 1;
rep ( i, 1, n << 1 ) {
if ( !s[i].se ) rep ( j, 0, n ) { // cow.
if ( j ) {
addeq( f[i][j][1], f[i - 1][j - 1][1] );
addeq( f[i][j][0], f[i - 1][j - 1][0] );
}
addeq( f[i][j][0], add( f[i - 1][j][0], f[i - 1][j][1] ) );
} else rep ( j, 0, n ) { // house.
f[i][j][0] = mul( j + 1, f[i - 1][j + 1][0] );
f[i][j][1] = add( mul( j + 1, f[i - 1][j + 1][1] ),
f[i - 1][j][1] );
}
}
printf( "%d\n", add( f[n << 1][0][0], f[n << 1][0][1] ) );
return 0;
}
Solution -「USACO 2020.12 P」Sleeping Cows的更多相关文章
- Solution -「USACO 2020.12 P」Spaceship
\(\mathcal{Description}\) Link. Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态 ...
- Solution -「SV 2020 Round I」SA
\(\mathcal{Description}\) 求出处 owo. 给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...
- Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits
\(\mathcal{Description}\) link. 给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一 ...
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
- Solution -「2020.12.26」 模拟赛
0x00 前言 一些吐槽. 考得很变态诶,看每道题平均两秒的时限就知道了... T1 降智了想到后缀懒得打. T2 口胡了假优化,结果和暴力分一样?? T3 黑题还绑点?? \(50 + 80 + 0 ...
- Solution -「ZJOI 2020」「洛谷 P6631」序列
\(\mathcal{Description}\) Link. 给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...
- Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthon ...
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- Solution -「FJWC 2020」人生
\(\mathcal{Description}\) OurOJ. 有 \(n\) 个结点,一些结点有染有黑色或白色,其余待染色.将 \(n\) 个结点染上颜色并连接有向边,求有多少个不同(结点 ...
随机推荐
- 通过js触发onPageView和event事件获取页面信息
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6814814715022148100/ 承接上一篇文档<js页面触发launch事件编写> pageVi ...
- LINUX学习-Nginx实现https
一.环境准备 1.安装nginx时,需要将--with-http_ssl_module 模块开启. 2.关闭selinux和防火墙 3.在 /usr/local/nginx/html/ 目录下添加bb ...
- 离线环境安装使用 Ansible
之前写了一篇介绍 Ansible 的文章 ,今天回顾看来写的有些匆忙,一些具体的操作步骤都没有讲明白,不利于读者复现学习.最近又申请了一个几百台机器的环境,正好借此机会把如何在离线环境中使用 Ansi ...
- Python科学计算类库
Numpy是什么 Numpy是一个开源的Python科学计算库.使用Numpy,就可以很自然地使用数组和矩阵.Numpy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能. 矩阵: ...
- 推荐一个最懂程序员的google插件
0.前言 很多人应该也和我一样,使用google浏览器时,它的主页是真不咋地,太单调了,用起来贼不爽,想整它很久了 一打开就是上面的样子,让我看起来真心真心不爽 当然:为了这个不关技术的瞎犊子事情,曾 ...
- No shutdown animation in the electricity display only 1%
低电量自动关机时无关机动画 低电量自动关机时无关机动画1. 问题描述2. 分析3. solution4. 总结 1. 问题描述 DEFECT DESCRIPTION: No shutdown anim ...
- 《剑指offer》面试题30. 包含min函数的栈
问题描述 定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min.push 及 pop 的时间复杂度都是 O(1). 示例: MinStack minSt ...
- 利用SelectPdf插件将网页生成PDF
简介 适用于.NET Framework和.NET Core的HTML至PDF转换器 SelectPdf提供的在线html到pdf转换器使用.NET的Select.Pdf库中的html到pdf转换器. ...
- 集合框架-工具类-JDK5.0特性-函数可变参数
1 package cn.itcast.p4.news.demo; 2 3 public class ParamterDemo { 4 5 public static void main(String ...
- k8S 不同 port 解析
apiVersion: v1 kind: Service metadata: name: nginx-service spec: type: NodePort // 有配置NodePort,外部流量可 ...