「CF576D」 Flights for Regular Customers

对不起我又想网络流去了

你看这长得多像啊,走过至少多少条边就是流量下界,然后没上界

但是这个题求的最少走多少条边啊...完全不一样好吧...

然后又开始想最短路相关算法,然后觉得分层图可以直接跑,然后发现 \(d_i\le 10^9\),直接爆炸。

然后就不会了。

注意到恰好走过 \(k\) 条边的最短路是可以通过 \(\texttt{Floyd}\) 求得的。那如果我走 \(k\) 条边能够到达某个点,那么我从这个点出发一定能走到所有权值 \(\le k\) 的边上去。

这启发我们对所有边按照 \(d_i\) 从小到大排序。

然后每一次预先求出走 \(d_i\) 步能够到达的点,以这些点为起点进行 \(\texttt{BFS}\),得到的到终点的距离加上 \(d_i\) 就是可能的答案。

然后发现本题我们不需要知道最短路长度,我们只需要维护可达性,使用 \(\texttt{bitset}\) 进行优化即可。

总时间复杂度为 \(O(m\frac{n^3\log d}{w})\)。

/*---Author:HenryHuang---*/
/*---Never Settle---*/
#include<bits/stdc++.h>
using namespace std;
const int maxn=155;
int dis[maxn],n,m;
struct edge{
int u,v,w;
bool operator<(const edge &h)const{
return w<h.w;
}
}e[maxn];
struct matrix{
bitset<maxn> a[maxn];
matrix operator *(const matrix &h)const{
matrix z;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(a[i][j]) z.a[i]|=h.a[j];
return z;
}
}ans,a;
void ksm(matrix a,int b){
while(b){
if(b&1) ans=ans*a;
b>>=1,a=a*a;
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>m;
for(int i=1;i<=m;++i){
int a,b,c;cin>>a>>b>>c;
e[i]=(edge){a,b,c};
}
for(int i=1;i<=n;++i) ans.a[i][i]=1;
sort(e+1,e+m+1);
int Ans=2e9;
for(int i=1;i<=m;++i){
if(Ans<=e[i].w) break;
int delta=e[i].w-e[i-1].w;
ksm(a,delta);
a.a[e[i].u][e[i].v]=1;
queue<int> Q;
for(int j=1;j<=n;++j)
if(ans.a[1][j]) Q.emplace(j),dis[j]=0;
else dis[j]=-1;
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int v=1;v<=n;++v)
if(a.a[u][v]&&dis[v]==-1) dis[v]=dis[u]+1,Q.emplace(v);
}
if(dis[n]!=-1) Ans=min(Ans,dis[n]+e[i].w);
}
if(Ans==2e9) cout<<"Impossible\n";
else cout<<Ans<<'\n';
return 0;
}

「CF576D」 Flights for Regular Customers的更多相关文章

  1. 题解 CF576D 【Flights for Regular Customers】

    对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序. 然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另 ...

  2. CF576D Flights for Regular Customers 矩阵乘法 + Bitset优化

    %%%cxhscst2's blog Codeforces 576D Flights for Regular Customers(矩阵加速DP) 代码非常优美 + 简洁,学习到了 Code: #inc ...

  3. 【CodeForces】576 D. Flights for Regular Customers

    [题目]D. Flights for Regular Customers [题意]给定n个点m条边的有向图,每条边有di表示在经过该边前必须先经过di条边,边可重复经过,求1到n的最小经过边数.n,m ...

  4. Codeforces 576D Flights for Regular Customers(矩阵加速DP)

    题目链接  Flights for Regular Customers 首先按照$d$的大小升序排序 然后分成$m$个时刻,每条路径一次处理过来. $can[i][j]$表示当前时刻$i$能否走到$j ...

  5. CF576D. Flights for Regular Customers

    n<=150个点,m<=150条路,每条路Ai,Bi,Di表示Ai到Bi有一条有向边,使用他前至少要走Di条路,问1到n最少走几条路. 又是n^4过150的题.... 不同于传统的最短路, ...

  6. (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

    In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...

  7. Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP

    题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...

  8. Codeforces 576D. Flights for Regular Customers(倍增floyd+bitset)

    这破题调了我一天...错了一大堆细节T T 首先显然可以将边权先排序,然后逐个加进图中. 加进图后,倍增跑跑看能不能到达n,不能的话加新的边继续跑. 倍增的时候要预处理出h[i]表示转移矩阵的2^0~ ...

  9. Codeforces 576D Flights for Regular Customers (图论、矩阵乘法、Bitset)

    题目链接 http://codeforces.com/contest/576/problem/D 题解 把边按\(t_i\)从小到大排序后枚举\(i\), 求出按前\((i-1)\)条边走\(t_i\ ...

随机推荐

  1. [leetcode] 208. 实现 Trie (前缀树)(Java)

    208. 实现 Trie (前缀树) 实现Trie树,网上教程一大堆,没啥可说的 public class Trie { private class Node { private int dumpli ...

  2. eclipse集成processing、PApplet、proclipsing 问题

    最近老是换应用平台,将processing里的代码转移到eclipse中. processing 关于转换成eclipse的介绍也可以使用,但是没有介绍具体怎么使用第三方库 Processing in ...

  3. 改造 Firefox 浏览器——GitHub 热点速览

    作者:HelloGitHub-小鱼干 上周推荐了一个可以在浏览器上用 VS Code 的项目,这次 Firefox-UI-Fix 带你给 Firefox 来个大变身,在它现有 Proton UI 下进 ...

  4. MLIR算子量化Quantization

    MLIR算子量化Quantization 本文概述了MLIR量化系统的设计.虽然术语"量化"是高度过载的,用于将浮点计算转换为以整数数学表示,适配的变量进行推理的技术的相当窄的范围 ...

  5. 【工具解析】瑞士军刀bettercap2.X解析_第一期_编写HTTP代理注入模块_http(s).proxy.script

    /文章作者:Kali_MG1937 CNBLOG博客号:ALDYS4 QQ:3496925334/ 前言 bettercap已经从1.6更新至2.0版本 语言也从ruby改为了go 编写注入模块指定的 ...

  6. 《吃透MQ系列》之扒开Kafka的神秘面纱

    大家好,这是<吃透 MQ 系列>的第二弹,有些珊珊来迟,后台被好几个读者催更了,实属抱歉! 这篇文章拖更了好几周,起初的想法是:围绕每一个具体的消息中间件,不仅要写透,而且要控制好篇幅,写 ...

  7. 2020想进大厂你不得不了解的MySQL意外事件的查询技巧

    导读:数据库是导致应用系统运行缓慢的常见原因.面对数据库引性能问题,很多开发者或者DBA却束手无策.本文作者经过多年的实际经验,整理了一些材料,将Linux环境下MySQL性能突发事件问题排查技巧分享 ...

  8. SQL中的分组之后TOPN问题

    SQL分组查询然后取每一组的前N条数据 由于SQL的不同的数据库SQL的语法有些略微不同,所以我们这里采用MySQL展示. 创建表 create table person(   id         ...

  9. Centos8.3、proxysql2.0读写分离实战记录

    接着主从复制继续往下讲,这个项目中我是使用proxysql做读写分离的中间件,之前是使用mycat.老实说mycat属于比较重量级的中间件,1.0还好到了2.0配置变得很复杂而且文档不是很齐全,我看着 ...

  10. JMeter定时器种类+详细教程举例

    首先,我们先了解一下定时器的常见种类以及它的作用. 原文地址:https://www.cnblogs.com/istart/p/11184533.html 一.定时器种类+作用 上面是我截图的自己有道 ...