叉姐牛逼。

\(f_{k,i} = \min_{0\leq j <i}{f_{k - 1,j} + RMQ(j + 1,i) * (i - j)}\)

我们考虑在序列上分治一波。

按照\(m\)切开,\(i >= m\),

我们需要找到

\(\min_{0\leq j < m} f_{k - 1,j} + \max{(suf[j],pre[i])} * (i - j)\)

然后我们发现此时\(suf[j]\)具有单调性。

我们可以分类讨论一下。

\(suf_j \leq pre_i\)

我们需要找到

\(\min_j g_j - pre[i] * j\)

否则

我们需要找到

\(min_j(g_j - suf_j * j) + i _suf[j]\)

考虑分治加单调栈处理。

叉姐牛逼。

#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 20001
#define INF 400000005 struct Line{
int k,b;
int val(int x){return k * x + b;}
}; inline bool check(Line u,Line v,Line w){
return 1ll * (v.b - u.b) * (v.k - w.k) < 1ll * (w.b - v.b) * (u.k - v.k);
} inline void qmin(int &x,int a){x = (x > a) ? a : x;} int n,a[N],dp[2][N],suf[N],pre[N];
Line stack[N]; #define m ((l + r) >> 1) inline void work(int *pdp,int *dp,int l,int r){
if(l < r){
suf[m] = 0;
for (int i = m; i > l; --i) {
suf[i - 1] = std::max(a[i], suf[i]);
}
pre[m] = 0;
for (int i = m + 1; i <= r; ++i) {
pre[i] = std::max(pre[i - 1], a[i]);
}
for (int i = m + 1, bot = n, j = m; i <= r; ++i) {
while (j >= l && suf[j] <= pre[i]) {
const Line line{-j, pdp[j]};
while (bot + 1 < n && !check(line, stack[bot], stack[bot + 1])) {
bot++;
}
stack[--bot] = line;
j--;
}
int x = pre[i];
while (bot + 1 < n && stack[bot].val(x) > stack[bot + 1].val(x)) {
bot++;
}
qmin(dp[i], stack[bot].val(x) + i * pre[i]);
}
for (int i = r, top = -1, j = l; i > m; --i) {
while (j <= m && suf[j] >= pre[i]) {
Line line{suf[j], pdp[j] - j * suf[j]};
j++;
while (j <= m && suf[j] == line.k) {
line.b = std::min(line.b, pdp[j] - j * suf[j]);
j++;
}
while (top - 1 >= 0 && !check(stack[top - 1], stack[top], line)) {
top--;
}
stack[++top] = line;
}
int x = i;
while (top - 1 >= 0 && stack[top - 1].val(x) < stack[top].val(x)) {
top--;
}
if (~top) {
qmin(dp[i], stack[top].val(x));
}
}
work(pdp, dp, l, m);
work(pdp, dp, m + 1, r);
}
} int main() {
int M;
scanf("%d%d", &n, &M);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
dp[0][0] = 0;
std::fill(dp[0] + 1, dp[0] + n + 1, INF);
for (int j = 0; j < M; ++j) {
std::fill(dp[(j + 1) & 1], dp[(j + 1) & 1] + (n + 1), INF);
work(dp[j & 1], dp[(j + 1) & 1], 0, n);
}
printf("%d\n", dp[M & 1][n]);
}

CF1175G的更多相关文章

随机推荐

  1. 【Spring】IoC容器 - 依赖注入

    前言 上一篇文章已经学习了[依赖查找]相关的知识,这里详细的介绍一下[依赖注入]. 依赖注入 - 分类 因为自己是基于小马哥的脉络来学习,并且很认可小马哥梳理的分类方式,下面按照小马哥思想为[依赖注入 ...

  2. go-zero 实战之 blog 系统

    go-zero 实战项目:blog 本文以 blog 的网站后台为例,着重介绍一下如何使用 go-zero 开发 blog 的用户模块. 本文涉及的所有资料都已上传 github 仓库 kougazh ...

  3. 【UE4 C++】UGameplayStatics 源代码

    // Copyright Epic Games, Inc. All Rights Reserved. #pragma once #include "CoreMinimal.h" # ...

  4. K8s容器存储接口(CSI)介绍

    Container Storage Interface是由来自Kubernetes.Mesos.Docker等社区member联合制定的一个行业标准接口规范,旨在将任意存储系统暴露给容器化应用程序. ...

  5. [对对子队]会议记录5.19(Scrum Meeting6)

    今天已完成的工作 吴昭邦 ​ 工作内容:搭建第9关 ​ 相关issue:搭建关卡7.8.9 ​ 相关签入:feat: 第9关能够通过 何瑞 ​ 工作内容:搭建第9关 ​ 相关issue:搭建关卡7.8 ...

  6. 通过Nacos动态刷新Spring Cloud Gateway的路由

    通过Nacos动态刷新Spring Cloud Gateway的路由 一.背景 二.解决方案 三.实现功能 四.实现步骤 1.网关服务的实现 1.pom文件 2.bootstrap.yml配置文件 3 ...

  7. 基于ImportBeanDefinitionRegistrar和FactoryBean动态注入Bean到Spring容器中

    基于ImportBeanDefinitionRegistrar和FactoryBean动态注入Bean到Spring容器中 一.背景 二.实现方案 1.基于@ComponentScan注解实现 2.基 ...

  8. elasticsearch的索引重建

    我们知道es在字段的mapping建立后就不可再次修改mapping的值.在我们实际的情况下有些时候就是需要修改mapping的值,解决方案就是重新构建索引数据. 方式一 : 使用索引别名,创建另外一 ...

  9. 2021.8.15考试总结[NOIP模拟40]

    T1 送花 线段树.枚举右端点,线段树记录左端点对应的值. 每次对当前颜色上上次出现的位置到上次出现的位置区间减,上次出现的位置到当前位置区间加. $code:$ 1 #include<bits ...

  10. C/C++编程笔记:浪漫流星雨表白装b程序

    作为一个未来可能会成为一个专业程序员的小伙们,不知道你们现在学到哪里了,学了点东西之后有没有想在你女朋友面前装个大大的b呢,今天小编就给你一个机会来研究一下下边的代码吧,保证大写的N,当然大佬是排除在 ...