[FJ2021]D2T3题解
考试的时候一点思路没有,最近听福州的神仙的一些做法。
想自己推一下。
题目大概是这样的
\(a_i = \frac{i\ *\ a_{i - 1} \ + \ i\ * \ (i\ -\ 1)\ * \ a_{i - 2}}{2}+(-1)^i * (1 - \frac{i}{2})\)
\(s_i = \sum_{i = 1}^n C^{n}_{n - i} * (n - i + 1) a_i\)
设母函数\(S(x) = \sum_{i = 0}^{\infty} s_i x^i\)
\(G(x) = \sum_{i = 0}^{\infty} \frac{a_i}{i!} x^i\)
\(F(x) = \sum_{i = 0}^{\infty} \frac{i + 1}{i!} x^i\)
考虑生成函数卷积。
\(S(x) = n!G(x)*F(x)\)
\(F(x) = \sum_{i = 0}^{\infty} \frac{i + 1}{i!} x^i\\=\sum_{i = 1}^{\infty}\frac{1}{(i - 1)!} x^i + \sum_{i = 0}^{\infty}\frac{1}{i!} x^i\\=xe^x + e^x\\=(1 + x)e^x\)
考虑\(G_i = \frac{a_i}{i!}\)
\(2G_i =G_{i - 1} + G_{i - 2} + \frac{(-1)^{i - 1}\ (i - 2)}{i!} - 2[i = 0] + [i = 1] + [i = 2]\\ =G_{i - 1} + G_{i - 2} + \frac{(-1)^{i - 1}}{(i - 1)!} + \frac{(-1)^{i}\ 2}{i!} - 2[i = 0] + [i = 1] + [i = 2]\)
所以\(2G(x) = xG(x) + x^2G(x) + \sum_{i = 1}^{\infty}\frac{(-1)^{i - 1}}{(i - 1)!}x^i + 2\sum_{i = 0}^{\infty}\frac{(-1)^{i}}{(i)!}x^i - 2 + x + x ^ 2\\=
xG(x)+x^2G(x) + xe^{-x} + 2e^{-x} - 2 + x + x ^ 2\)
所以有\((2 - x - x^2)G(x) = (2 + x)e^{-x} - (2 - x - x^2)\)
所以\(G(x) = \frac{e^{-x}}{1 - x} - 1\)
\(S(x) = n!(F(x)G(x))\\=n!((1 + x)e^x\frac{e^{-x}}{1 - x} - (1+x)e^x)\\=n!(\frac{1+x}{1-x} - (1+x)e^x)\\=n!((-1 + \frac{2}{1 - x})-(1+x)e^x)\\=n!\sum_{i = 0}^{\infty}2x^i - n! - n!\sum_{i = 0}^{\infty}\frac{i + 1}{i!}x^i\)
\(S_n = [x ^ n]S(x) = 2n! - n![x == 0] - n - 1\)
完了。
生成函数真好玩,感觉很奇妙的样子
[FJ2021]D2T3题解的更多相关文章
- NOIP2017 D2T3 题解
题面 这种数据范围不是乱搞dfs就是乱搞状压DP 首先应该通过任一方式求出a和b的值: 任意一条抛物线只用两头猪就可以确定,所以我们N^2枚举,并把在这两头猪的抛物线上的猪都存进状态state[i][ ...
- 【NOIP题解】NOIP2017 TG D2T3 列队
列队,NOIP2017 TG D2T3. 树状数组经典题. 题目链接:洛谷. 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. ...
- NOIp2016 D2T3 愤怒的小鸟【搜索】(网上题解正解是状压)
题目传送门 没啥别的想法,感觉就是搜索,经过原点的抛物线已知两个点就可以求出解析式,在还没有被打下来的两个猪之间随意配对,确定解析式之后标记在这个抛物线下被打下来的猪. 猪也可以单独用一个抛物线打下来 ...
- NOIP2012 D2T3 疫情控制 题解
题面 这道题由于问最大值最小,所以很容易想到二分,但怎么验证并且如何实现是这道题的难点: 首先我们考虑,对于一个军队,尽可能的往根节点走(但一定不到)是最优的: 判断一个军队最远走到哪可以树上倍增来实 ...
- HEOI2016 题解
HEOI2016 题解 Q:为什么要在sdoi前做去年的heoi题 A:我省选药丸 http://cogs.pro/cogs/problem/index.php?key=heoi2016 D1T1 树 ...
- pkuwc2018题解
题解: 思路挺好想的..然而今天写代码写成傻逼了 d1t1: 首先比较暴力的就是$f[i][j]$表示i个这个点是j的概率 然后前缀和一下dp就是$n^2$的 部分分树形态随机就说明树深度是$log$ ...
- HNOI2018简要题解
HNOI2018简要题解 D1T1 寻宝游戏 题意 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为 ...
- BJOI2018简要题解
BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...
- CQOI2018简要题解
CQOI2018简要题解 D1T1 破解 D-H 协议 题意 Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信 ...
随机推荐
- FastAPI 学习之路(三十二)创建数据库
在大型的web开发中,我们肯定会用到数据库操作,那么FastAPI也支持数据库的开发,你可以用 PostgreSQL MySQL SQLite Oracle 等 本文用SQLite为例.我们看下在fa ...
- Chrome 实时字幕
Chrome 实时字幕
- python在指定一行的下一行插入文本
给定一个程序,程序中有许多函数,比如,funcA,funcB,现在,如何在生成的函数中插入一个logger()语句? 这里用一个solidity程序做例子 pragma solidity ^0.4.0 ...
- API代码实战
API实例一: login.py文件 #!/usr/bin/env python #!coding:utf-8 from flask import Flask,jsonify from flask_r ...
- javascript运算符和表达式
1.表达式的概念 由运算符连接操作组成的式子,不管式子有多长,最终都是一个值. 2.算术运算符 加+ 减- 乘* 除/ 取模% 负数- 自增++ 自减-- 3.比较运算符 等于== 严格等于=== ...
- SpringMvc 中 FrameworkServlet 覆盖 service 的有点。
@Override protected void service(HttpServletRequest request, HttpServletResponse response) throws Se ...
- BUAA软件工程结对项目作业
BUAA软件工程结对项目 小组成员:16005001,17373192 1.教学班级和项目地址 项目 内容 这个作业属于哪个课程 博客园班级连接 这个作业的要求在哪里 结对项目作业 我在这个课程的目标 ...
- 硬件工程师必须掌握的PCB叠层设计内容
总的来说叠层设计主要要遵从两个规矩: 1. 每个走线层都必须有一个邻近的参考层(电源或地层); 2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容; 下面列出从两层板到八层板的叠层来进行示 ...
- 单片机stm32零基础入门之--初识STM32 标准库
CMSIS 标准及库层次关系 因为基于Cortex 系列芯片采用的内核都是相同的,区别主要为核外的片上外设的差异,这些差异却导致软件在同内核,不同外设的芯片上移植困难.为了解决不同的芯片厂商生产的Co ...
- JS控制文本框禁止输入特殊字符
JS 控制不能输入特殊字符<input type="text" class="domain" onkeyup="this.value=this. ...