Schmidt L, Santurkar S, Tsipras D, et al. Adversarially Robust Generalization Requires More Data[C]. neural information processing systems, 2018: 5014-5026.

@article{schmidt2018adversarially,

title={Adversarially Robust Generalization Requires More Data},

author={Schmidt, Ludwig and Santurkar, Shibani and Tsipras, Dimitris and Talwar, Kunal and Madry, Aleksander},

pages={5014--5026},

year={2018}}

本文在二分类高斯模型和伯努利模型上分析adversarial, 指出对抗稳定的模型需要更多的数据支撑.

主要内容

高斯模型定义: 令\(\theta^* \in \mathbb{R}^n\)为均值向量, \(\sigma >0\), 则\((\theta^*, \sigma)\)-高斯模型按照如下方式定义: 首先从等概率采样标签\(y \in \{\pm 1\}\), 再从\(\mathcal{N}(y \cdot \theta^*, \sigma^2I)\)中采样\(x \in \mathbb{R}^d\).

伯努利模型定义: 令\(\theta^* \in \{\pm1\}^d\)为均值向量, \(\tau >0\), 则\((\theta^*, \tau)\)-伯努利模型按照如下方式定义: 首先等概率采样标签\(y \in \{\pm 1\}\), 在从如下分布中采样\(x \in \{\pm 1\}^d\):

\[x_i =
\left \{
\begin{array}{rl}
y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2+\tau \\
-y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2-\tau
\end{array} \right.
\]

分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的分类错误\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [f(x) \not =y]\).

Robust分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, \(\mathcal{B}: \mathbb{R}^d \rightarrow \mathscr{P}(\mathbb{R}^d)\)为一摄动集合. 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的\(\mathcal{B}\)-robust 分类错误率\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [\exist x' \in \mathcal{B}(x): f(x') \not = y]\).

注: 以\(\mathcal{B}_p^{\epsilon}(x)\)表示\(\{x' \in \mathbb{R}^d|\|x'-x\|_p \le \epsilon\}\).

高斯模型

upper bound

定理18: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为:

\[\exp (-\frac{(2\sqrt{n}-1)^2d}{2(2\sqrt{n}+4\sigma)^2\sigma^2}).
\]

定理21: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 如果

\[\epsilon \le \frac{2\sqrt{n}-1}{2\sqrt{n}+4\sigma} - \frac{\sigma\sqrt{2\log 1/\beta}}{\sqrt{d}},
\]

则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至多为\(\beta\).

lower bound

定理11: 令\(g_n\)为任意的学习算法, 并且, \(\sigma > 0, \epsilon \ge 0\), 设\(\theta \in \mathbb{R}^d\)从\(\mathcal{N}(0,I)\)中采样. 并从\((\theta,\sigma)\)-高斯模型中采样\(n\)个样本, 由此可得到分类器\(f_n: \mathbb{R}^d \rightarrow \{\pm 1\}\). 则分类器关于\(\theta, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至少

\[\frac{1}{2} \mathbb{P}_{v\sim \mathcal{N}(0, I)} [\sqrt{\frac{n}{\sigma^2+n}} \|v\|_{\infty} \le \epsilon ].
\]

伯努利模型

upper bound

令\((x, y) \in \mathbb{R}^d \times \{\pm1\}\)从一\((\theta^*, \tau)\)-伯努利模型中采样得到. 令\(\hat{w}=z / \|z\|_2\), 其中\(z=yx\). 则至少有\(1- \exp (-\frac{\tau^2d}{2})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为\(\exp (-2\tau^4d)\).

lower bound

引理30: 令\(\theta^* \in \{\pm1\}^d\) 并且关于\((\theta^*, \tau)-伯努利模型\)考虑线性分类器\(f_{\theta^*}\),

\(\ell_{\infty}^{\tau}\)-robustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{\tau}\)-robust分类误差率至多为\(2\exp (-\tau^2d/2)\).

\(\ell_{\infty}^{3\tau}\)-nonrobustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{3\tau}\)-robust分类误差率至少为\(1-2\exp (-\tau^2d/2)\).

Near-optimality of \(\theta^*\): 对于任意线性分类器, \(\ell_{\infty}^{3\tau}\)-robust 分类误差率至少为\(\frac{1}{6}\).

定理31: 令\(g_n\)为任一线性分类器学习算法. 假设\(\theta^*\)均匀采样自\(\{\pm1\}^d\), 并从\((\theta^*, \tau)\)-伯努利分布(\(\tau \le 1/4\))中采样\(n\)个样本, 并借由\(g_n\)得到线性分类器\(f_{w}\).同时\(\epsilon < 3\tau\)且\(0 < \gamma < 1/2\), 则当

\[n \le \frac{\epsilon^2\gamma^2}{5000 \cdot \tau^4 \log (4d/\gamma)},
\]

\(f_w\)关于\(\theta^*, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的期望\(\ell_{\infty}^{\epsilon}\)-robust 分类误差至少为\(\frac{1}{2}-\gamma\).

Adversarially Robust Generalization Requires More Data的更多相关文章

  1. Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

    目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...

  2. 自定义 ASP.NET Identity Data Model with EF

    One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...

  3. ExtJs Ext.data.Model 学习笔记

    Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...

  4. Buffer Data

    waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...

  5. Buffer Data RDMA 零拷贝 直接内存访问

    waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Wide and Deep Learning Model

    https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...

  8. Android开发训练之第五章——Building Apps with Connectivity & the Cloud

    Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...

  9. C# Interview Questions:C#-English Questions

    This is a list of questions I have gathered from other sources and created myself over a period of t ...

随机推荐

  1. Hadoop【MR的分区、排序、分组】

    [toc] 一.分区 问题:按照条件将结果输出到不同文件中 自定义分区步骤 1.自定义继承Partitioner类,重写getPartition()方法 2.在job驱动Driver中设置自定义的Pa ...

  2. 一起手写吧!sleep函数!

    Async/Await 版本 function sleep(delay) { return new Promise(reslove => { setTimeout(reslove, delay) ...

  3. CRLF漏洞浅析

    部分情况下,由于与客户端存在交互,会形成下面的情况 也就是重定向且Location字段可控 如果这个时候,可以向Location字段传点qqgg的东西 形成固定会话 但服务端应该不会存储,因为后端貌似 ...

  4. 集合类——Collection、List、Set接口

    集合类 Java类集 我们知道数组最大的缺陷就是:长度固定.从jdk1.2开始为了解决数组长度固定的问题,就提供了动态对象数组实现框架--Java类集框架.Java集合类框架其实就是Java针对于数据 ...

  5. 【编程思想】【设计模式】【行为模式Behavioral】模板模式Template

    Python转载版 https://github.com/faif/python-patterns/blob/master/behavioral/template.py #!/usr/bin/env ...

  6. 【Linux】【Services】【Project】Cobbler自动化装机

    1. 概念 1.1. Cobbler 1.2. PXE 1.3. 2. 版本信息 2.1. OS:Red Hat Enterprise Linux Server release 7.3 (Maipo) ...

  7. Spring 文档汇总

    Spring Batch - Reference Documentation Spring Batch 参考文档中文版 Spring Batch 中文文档 Table 2. JdbcCursorIte ...

  8. 一个超好用的 Python 标准库,彻底玩透路径操作

    pathlib 学习 Python 时,尤其是在进行文件操作和数据处理时,经常会处理路径问题.最常用和常见的是 os.path 模块,它将路径当做字符串进行处理,如果使用不当可能导致难以察觉的错误,而 ...

  9. 07- Vue3 UI Framework - Switch 组件

    为了更好的提升用户体验,我们这里再做一个很常用的开关组件 switch 返回阅读列表点击 这里 需求分析 开始之前我们先做一个简单的需求分析 switch 组件应分为选中/未被选中,两种状态 可以通过 ...

  10. MySQL 面试题汇总(持续更新中)

    COUNT COUNT(*) 和 COUNT(1) 根据 MySQL 官方文档的描述: InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) opera ...