Adversarially Robust Generalization Requires More Data
@article{schmidt2018adversarially,
title={Adversarially Robust Generalization Requires More Data},
author={Schmidt, Ludwig and Santurkar, Shibani and Tsipras, Dimitris and Talwar, Kunal and Madry, Aleksander},
pages={5014--5026},
year={2018}}
概
本文在二分类高斯模型和伯努利模型上分析adversarial, 指出对抗稳定的模型需要更多的数据支撑.
主要内容
高斯模型定义: 令\(\theta^* \in \mathbb{R}^n\)为均值向量, \(\sigma >0\), 则\((\theta^*, \sigma)\)-高斯模型按照如下方式定义: 首先从等概率采样标签\(y \in \{\pm 1\}\), 再从\(\mathcal{N}(y \cdot \theta^*, \sigma^2I)\)中采样\(x \in \mathbb{R}^d\).
伯努利模型定义: 令\(\theta^* \in \{\pm1\}^d\)为均值向量, \(\tau >0\), 则\((\theta^*, \tau)\)-伯努利模型按照如下方式定义: 首先等概率采样标签\(y \in \{\pm 1\}\), 在从如下分布中采样\(x \in \{\pm 1\}^d\):
\left \{
\begin{array}{rl}
y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2+\tau \\
-y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2-\tau
\end{array} \right.
\]
分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的分类错误\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [f(x) \not =y]\).
Robust分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, \(\mathcal{B}: \mathbb{R}^d \rightarrow \mathscr{P}(\mathbb{R}^d)\)为一摄动集合. 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的\(\mathcal{B}\)-robust 分类错误率\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [\exist x' \in \mathcal{B}(x): f(x') \not = y]\).
注: 以\(\mathcal{B}_p^{\epsilon}(x)\)表示\(\{x' \in \mathbb{R}^d|\|x'-x\|_p \le \epsilon\}\).
高斯模型
upper bound
定理18: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为:
\]
定理21: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 如果
\]
则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至多为\(\beta\).
lower bound
定理11: 令\(g_n\)为任意的学习算法, 并且, \(\sigma > 0, \epsilon \ge 0\), 设\(\theta \in \mathbb{R}^d\)从\(\mathcal{N}(0,I)\)中采样. 并从\((\theta,\sigma)\)-高斯模型中采样\(n\)个样本, 由此可得到分类器\(f_n: \mathbb{R}^d \rightarrow \{\pm 1\}\). 则分类器关于\(\theta, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至少为
\]
伯努利模型
upper bound
令\((x, y) \in \mathbb{R}^d \times \{\pm1\}\)从一\((\theta^*, \tau)\)-伯努利模型中采样得到. 令\(\hat{w}=z / \|z\|_2\), 其中\(z=yx\). 则至少有\(1- \exp (-\frac{\tau^2d}{2})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为\(\exp (-2\tau^4d)\).
lower bound
引理30: 令\(\theta^* \in \{\pm1\}^d\) 并且关于\((\theta^*, \tau)-伯努利模型\)考虑线性分类器\(f_{\theta^*}\),
\(\ell_{\infty}^{\tau}\)-robustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{\tau}\)-robust分类误差率至多为\(2\exp (-\tau^2d/2)\).
\(\ell_{\infty}^{3\tau}\)-nonrobustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{3\tau}\)-robust分类误差率至少为\(1-2\exp (-\tau^2d/2)\).
Near-optimality of \(\theta^*\): 对于任意的线性分类器, \(\ell_{\infty}^{3\tau}\)-robust 分类误差率至少为\(\frac{1}{6}\).
定理31: 令\(g_n\)为任一线性分类器学习算法. 假设\(\theta^*\)均匀采样自\(\{\pm1\}^d\), 并从\((\theta^*, \tau)\)-伯努利分布(\(\tau \le 1/4\))中采样\(n\)个样本, 并借由\(g_n\)得到线性分类器\(f_{w}\).同时\(\epsilon < 3\tau\)且\(0 < \gamma < 1/2\), 则当
\]
\(f_w\)关于\(\theta^*, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的期望\(\ell_{\infty}^{\epsilon}\)-robust 分类误差至少为\(\frac{1}{2}-\gamma\).
Adversarially Robust Generalization Requires More Data的更多相关文章
- Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...
- 自定义 ASP.NET Identity Data Model with EF
One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...
- ExtJs Ext.data.Model 学习笔记
Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...
- Buffer Data
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- Buffer Data RDMA 零拷贝 直接内存访问
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Wide and Deep Learning Model
https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...
- Android开发训练之第五章——Building Apps with Connectivity & the Cloud
Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...
- C# Interview Questions:C#-English Questions
This is a list of questions I have gathered from other sources and created myself over a period of t ...
随机推荐
- Vue2全家桶+Element搭建的PC端在线音乐网站
目录 1,前言 2,已有功能 3,使用 4,目录结构 5,页面效果 登录页 首页 排行榜 歌单列表 歌单详情 歌手列表 歌手详情 MV列表 MV详情 搜索页 播放器 1,前言 项目基于Vue2全家桶及 ...
- CPU如何同时运行多个进程?
1 # -*- coding: utf-8 -*- 2 import re 3 mem = [x for x in re.split('[\r|\n]', ''' 4 store a 1 5 add ...
- Linux下强制踢掉登陆用户
1.pkill -kill -t tty 例:pkill -kill -t tty1
- Output of C++ Program | Set 14
Predict the output of following C++ program. Difficulty Level: Rookie Question 1 1 #include <iost ...
- 数据库ER图基础概念
ER图分为实体.属性.关系三个核心部分.实体是长方形体现,而属性则是椭圆形,关系为菱形. ER图的实体(entity)即数据模型中的数据对象,例如人.学生.音乐都可以作为一个数据对象,用长方体来表示, ...
- Can namespaces be nested in C++?
In C++, namespaces can be nested, and resolution of namespace variables is hierarchical. For example ...
- java中super的几种用法,与this的区别
1. 子类的构造函数如果要引用super的话,必须把super放在函数的首位. class Base { Base() { System.out.println("Base"); ...
- 【Spring Framework】Spring入门教程(五)AOP思想和动态代理
本文主要讲解内容如下: Spring的核心之一 - AOP思想 (1) 代理模式- 动态代理 ① JDK的动态代理 (Java官方) ② CGLIB 第三方代理 AOP概述 什么是AOP(面向切面编程 ...
- Python 中更安全的 eval
问题 想要将一段列表形式的字符串转为 list,但是担心这个动态的字符串可能是恶意的代码?使用 eval 将带来安全隐患.比如: # 期望是 eval('[1, 2, 3]') # 实际上是 eval ...
- CF135A Replacement 题解
Content 有 \(n\) 个数 \(a_1,a_2,a_3,...,a_n\),试用 \(1\) ~ \(10^9\) 之间的数(除了本身)代替其中的一个数,使得这 \(n\) 个数的总和最小, ...