Adversarially Robust Generalization Requires More Data
@article{schmidt2018adversarially,
title={Adversarially Robust Generalization Requires More Data},
author={Schmidt, Ludwig and Santurkar, Shibani and Tsipras, Dimitris and Talwar, Kunal and Madry, Aleksander},
pages={5014--5026},
year={2018}}
概
本文在二分类高斯模型和伯努利模型上分析adversarial, 指出对抗稳定的模型需要更多的数据支撑.
主要内容
高斯模型定义: 令\(\theta^* \in \mathbb{R}^n\)为均值向量, \(\sigma >0\), 则\((\theta^*, \sigma)\)-高斯模型按照如下方式定义: 首先从等概率采样标签\(y \in \{\pm 1\}\), 再从\(\mathcal{N}(y \cdot \theta^*, \sigma^2I)\)中采样\(x \in \mathbb{R}^d\).
伯努利模型定义: 令\(\theta^* \in \{\pm1\}^d\)为均值向量, \(\tau >0\), 则\((\theta^*, \tau)\)-伯努利模型按照如下方式定义: 首先等概率采样标签\(y \in \{\pm 1\}\), 在从如下分布中采样\(x \in \{\pm 1\}^d\):
\left \{
\begin{array}{rl}
y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2+\tau \\
-y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2-\tau
\end{array} \right.
\]
分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的分类错误\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [f(x) \not =y]\).
Robust分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, \(\mathcal{B}: \mathbb{R}^d \rightarrow \mathscr{P}(\mathbb{R}^d)\)为一摄动集合. 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的\(\mathcal{B}\)-robust 分类错误率\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [\exist x' \in \mathcal{B}(x): f(x') \not = y]\).
注: 以\(\mathcal{B}_p^{\epsilon}(x)\)表示\(\{x' \in \mathbb{R}^d|\|x'-x\|_p \le \epsilon\}\).
高斯模型
upper bound
定理18: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为:
\]
定理21: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 如果
\]
则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至多为\(\beta\).
lower bound
定理11: 令\(g_n\)为任意的学习算法, 并且, \(\sigma > 0, \epsilon \ge 0\), 设\(\theta \in \mathbb{R}^d\)从\(\mathcal{N}(0,I)\)中采样. 并从\((\theta,\sigma)\)-高斯模型中采样\(n\)个样本, 由此可得到分类器\(f_n: \mathbb{R}^d \rightarrow \{\pm 1\}\). 则分类器关于\(\theta, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至少为
\]
伯努利模型
upper bound
令\((x, y) \in \mathbb{R}^d \times \{\pm1\}\)从一\((\theta^*, \tau)\)-伯努利模型中采样得到. 令\(\hat{w}=z / \|z\|_2\), 其中\(z=yx\). 则至少有\(1- \exp (-\frac{\tau^2d}{2})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为\(\exp (-2\tau^4d)\).
lower bound
引理30: 令\(\theta^* \in \{\pm1\}^d\) 并且关于\((\theta^*, \tau)-伯努利模型\)考虑线性分类器\(f_{\theta^*}\),
\(\ell_{\infty}^{\tau}\)-robustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{\tau}\)-robust分类误差率至多为\(2\exp (-\tau^2d/2)\).
\(\ell_{\infty}^{3\tau}\)-nonrobustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{3\tau}\)-robust分类误差率至少为\(1-2\exp (-\tau^2d/2)\).
Near-optimality of \(\theta^*\): 对于任意的线性分类器, \(\ell_{\infty}^{3\tau}\)-robust 分类误差率至少为\(\frac{1}{6}\).
定理31: 令\(g_n\)为任一线性分类器学习算法. 假设\(\theta^*\)均匀采样自\(\{\pm1\}^d\), 并从\((\theta^*, \tau)\)-伯努利分布(\(\tau \le 1/4\))中采样\(n\)个样本, 并借由\(g_n\)得到线性分类器\(f_{w}\).同时\(\epsilon < 3\tau\)且\(0 < \gamma < 1/2\), 则当
\]
\(f_w\)关于\(\theta^*, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的期望\(\ell_{\infty}^{\epsilon}\)-robust 分类误差至少为\(\frac{1}{2}-\gamma\).
Adversarially Robust Generalization Requires More Data的更多相关文章
- Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...
- 自定义 ASP.NET Identity Data Model with EF
One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...
- ExtJs Ext.data.Model 学习笔记
Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...
- Buffer Data
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- Buffer Data RDMA 零拷贝 直接内存访问
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Wide and Deep Learning Model
https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...
- Android开发训练之第五章——Building Apps with Connectivity & the Cloud
Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...
- C# Interview Questions:C#-English Questions
This is a list of questions I have gathered from other sources and created myself over a period of t ...
随机推荐
- Hadoop【MR的分区、排序、分组】
[toc] 一.分区 问题:按照条件将结果输出到不同文件中 自定义分区步骤 1.自定义继承Partitioner类,重写getPartition()方法 2.在job驱动Driver中设置自定义的Pa ...
- 一起手写吧!sleep函数!
Async/Await 版本 function sleep(delay) { return new Promise(reslove => { setTimeout(reslove, delay) ...
- CRLF漏洞浅析
部分情况下,由于与客户端存在交互,会形成下面的情况 也就是重定向且Location字段可控 如果这个时候,可以向Location字段传点qqgg的东西 形成固定会话 但服务端应该不会存储,因为后端貌似 ...
- 集合类——Collection、List、Set接口
集合类 Java类集 我们知道数组最大的缺陷就是:长度固定.从jdk1.2开始为了解决数组长度固定的问题,就提供了动态对象数组实现框架--Java类集框架.Java集合类框架其实就是Java针对于数据 ...
- 【编程思想】【设计模式】【行为模式Behavioral】模板模式Template
Python转载版 https://github.com/faif/python-patterns/blob/master/behavioral/template.py #!/usr/bin/env ...
- 【Linux】【Services】【Project】Cobbler自动化装机
1. 概念 1.1. Cobbler 1.2. PXE 1.3. 2. 版本信息 2.1. OS:Red Hat Enterprise Linux Server release 7.3 (Maipo) ...
- Spring 文档汇总
Spring Batch - Reference Documentation Spring Batch 参考文档中文版 Spring Batch 中文文档 Table 2. JdbcCursorIte ...
- 一个超好用的 Python 标准库,彻底玩透路径操作
pathlib 学习 Python 时,尤其是在进行文件操作和数据处理时,经常会处理路径问题.最常用和常见的是 os.path 模块,它将路径当做字符串进行处理,如果使用不当可能导致难以察觉的错误,而 ...
- 07- Vue3 UI Framework - Switch 组件
为了更好的提升用户体验,我们这里再做一个很常用的开关组件 switch 返回阅读列表点击 这里 需求分析 开始之前我们先做一个简单的需求分析 switch 组件应分为选中/未被选中,两种状态 可以通过 ...
- MySQL 面试题汇总(持续更新中)
COUNT COUNT(*) 和 COUNT(1) 根据 MySQL 官方文档的描述: InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) opera ...