Schmidt L, Santurkar S, Tsipras D, et al. Adversarially Robust Generalization Requires More Data[C]. neural information processing systems, 2018: 5014-5026.

@article{schmidt2018adversarially,

title={Adversarially Robust Generalization Requires More Data},

author={Schmidt, Ludwig and Santurkar, Shibani and Tsipras, Dimitris and Talwar, Kunal and Madry, Aleksander},

pages={5014--5026},

year={2018}}

本文在二分类高斯模型和伯努利模型上分析adversarial, 指出对抗稳定的模型需要更多的数据支撑.

主要内容

高斯模型定义: 令\(\theta^* \in \mathbb{R}^n\)为均值向量, \(\sigma >0\), 则\((\theta^*, \sigma)\)-高斯模型按照如下方式定义: 首先从等概率采样标签\(y \in \{\pm 1\}\), 再从\(\mathcal{N}(y \cdot \theta^*, \sigma^2I)\)中采样\(x \in \mathbb{R}^d\).

伯努利模型定义: 令\(\theta^* \in \{\pm1\}^d\)为均值向量, \(\tau >0\), 则\((\theta^*, \tau)\)-伯努利模型按照如下方式定义: 首先等概率采样标签\(y \in \{\pm 1\}\), 在从如下分布中采样\(x \in \{\pm 1\}^d\):

\[x_i =
\left \{
\begin{array}{rl}
y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2+\tau \\
-y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2-\tau
\end{array} \right.
\]

分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的分类错误\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [f(x) \not =y]\).

Robust分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, \(\mathcal{B}: \mathbb{R}^d \rightarrow \mathscr{P}(\mathbb{R}^d)\)为一摄动集合. 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的\(\mathcal{B}\)-robust 分类错误率\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [\exist x' \in \mathcal{B}(x): f(x') \not = y]\).

注: 以\(\mathcal{B}_p^{\epsilon}(x)\)表示\(\{x' \in \mathbb{R}^d|\|x'-x\|_p \le \epsilon\}\).

高斯模型

upper bound

定理18: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为:

\[\exp (-\frac{(2\sqrt{n}-1)^2d}{2(2\sqrt{n}+4\sigma)^2\sigma^2}).
\]

定理21: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 如果

\[\epsilon \le \frac{2\sqrt{n}-1}{2\sqrt{n}+4\sigma} - \frac{\sigma\sqrt{2\log 1/\beta}}{\sqrt{d}},
\]

则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至多为\(\beta\).

lower bound

定理11: 令\(g_n\)为任意的学习算法, 并且, \(\sigma > 0, \epsilon \ge 0\), 设\(\theta \in \mathbb{R}^d\)从\(\mathcal{N}(0,I)\)中采样. 并从\((\theta,\sigma)\)-高斯模型中采样\(n\)个样本, 由此可得到分类器\(f_n: \mathbb{R}^d \rightarrow \{\pm 1\}\). 则分类器关于\(\theta, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至少

\[\frac{1}{2} \mathbb{P}_{v\sim \mathcal{N}(0, I)} [\sqrt{\frac{n}{\sigma^2+n}} \|v\|_{\infty} \le \epsilon ].
\]

伯努利模型

upper bound

令\((x, y) \in \mathbb{R}^d \times \{\pm1\}\)从一\((\theta^*, \tau)\)-伯努利模型中采样得到. 令\(\hat{w}=z / \|z\|_2\), 其中\(z=yx\). 则至少有\(1- \exp (-\frac{\tau^2d}{2})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为\(\exp (-2\tau^4d)\).

lower bound

引理30: 令\(\theta^* \in \{\pm1\}^d\) 并且关于\((\theta^*, \tau)-伯努利模型\)考虑线性分类器\(f_{\theta^*}\),

\(\ell_{\infty}^{\tau}\)-robustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{\tau}\)-robust分类误差率至多为\(2\exp (-\tau^2d/2)\).

\(\ell_{\infty}^{3\tau}\)-nonrobustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{3\tau}\)-robust分类误差率至少为\(1-2\exp (-\tau^2d/2)\).

Near-optimality of \(\theta^*\): 对于任意线性分类器, \(\ell_{\infty}^{3\tau}\)-robust 分类误差率至少为\(\frac{1}{6}\).

定理31: 令\(g_n\)为任一线性分类器学习算法. 假设\(\theta^*\)均匀采样自\(\{\pm1\}^d\), 并从\((\theta^*, \tau)\)-伯努利分布(\(\tau \le 1/4\))中采样\(n\)个样本, 并借由\(g_n\)得到线性分类器\(f_{w}\).同时\(\epsilon < 3\tau\)且\(0 < \gamma < 1/2\), 则当

\[n \le \frac{\epsilon^2\gamma^2}{5000 \cdot \tau^4 \log (4d/\gamma)},
\]

\(f_w\)关于\(\theta^*, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的期望\(\ell_{\infty}^{\epsilon}\)-robust 分类误差至少为\(\frac{1}{2}-\gamma\).

Adversarially Robust Generalization Requires More Data的更多相关文章

  1. Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

    目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...

  2. 自定义 ASP.NET Identity Data Model with EF

    One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...

  3. ExtJs Ext.data.Model 学习笔记

    Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...

  4. Buffer Data

    waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...

  5. Buffer Data RDMA 零拷贝 直接内存访问

    waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Wide and Deep Learning Model

    https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...

  8. Android开发训练之第五章——Building Apps with Connectivity & the Cloud

    Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...

  9. C# Interview Questions:C#-English Questions

    This is a list of questions I have gathered from other sources and created myself over a period of t ...

随机推荐

  1. 【STM32】晶振,主时钟,外设频率介绍

    首先,我用的是STM32F407,下方所有图片都是出自这芯片的文档,如果型号和我不同,需要找到对应的芯片说明文档,也许会有出入 先看一张时钟图 这里会着重说明高速的部分,低速(不管内部还是外部)只给R ...

  2. Oracle——创建存储过程

    有个超级详细的关于存储过程的帖子:https://www.cnblogs.com/snowballed/p/6766867.html Oracle-存储过程(procedure.function.pa ...

  3. AI常用环境安装

    torch环境 conda create --name py37 python=3.7 conda activate py37 pip install jieba==0.42.1pip install ...

  4. 哪里可以下载支付宝demo或者sdk

    http://club.alipay.com/read-htm-tid-9976972.html 这里有所有的demo和sdk包括移动产品的demo.在他的论坛里面呢 真心恶心啊.不放到主页.

  5. 搭建内网Yum源

    搭建内网yum源 阅读(2,238) 一:因内网服务器 众多,当统一安装一些比较大的rpm的时候全部从外网下载就比较慢,而且还占用了一定的出口流量,因此在内网部署了一台yum服务器,将阿里云的epel ...

  6. C++ default constructor | Built-in types

    Predict the output of following program? 1 #include <iostream> 2 using namespace std; 3 4 int ...

  7. java foreach循环抛出异常java.util.ConcurrentModificationException

    代码如下: for (Iterator<String> iter = list.iterator(); iter.hasNext(); ) { if (Integer.parseInt(i ...

  8. 使用buffered流结合byte数组,读入文件中的内容,包括中文字符

    package com.itcast.demo05.Buffered;import java.io.BufferedInputStream;import java.io.FileInputStream ...

  9. Java知识点总结——IO流框架

    IO框架 一.流的概念 概念:内存与存储设备之间传输数据的通道. 二.流的分类 按方向分类: 输入流:将<存储设备>中的内容读入到<内存>中 输出流:将<内存>中的 ...

  10. pwnable_start

    第一次接触这种类型的题,例行检查一下 题目是32位 没有开启nx保护可以通过shellocode来获得shell 将题目让如ida中 由于第一次碰到这种题,所以我会介绍的详细一点, 可以看到程序中调用 ...