EBGAN
Zhao J., Mathieu M. & LeCun Y. Energy-based generative adversarial networks. ICLR, 2017.
概
基于能量的一个解释.
主要内容
本文采用了与GAN不同的损失, 判别器\(D\)和生成器\(G\)分别最小化下面的损失:
\mathcal{L}_G(z) = D(G(z))
\]
需要注意的是, 这里的判别器\(D\)的输出已经不是普通GAN中判别器的真假概率了, 而是能量, 能量越低,即\(D(x)\)越小, 越真.
用\(V(G, D)= \int_{x, z} \mathcal{L}_D(x, z) p_{data}(x) p_g(z) \mathrm{d}x\mathrm{d}z\), 用\(U(G,D) = \int_{z} \mathcal{L}_G(z) p_g(z)\mathrm{d}z\), 考虑如下纳什均衡
U(G^*, D^*) \le U(G, D^*), \quad \forall G.
\]
第一个需要考虑的问题是, 这样的纳什均衡解会有什么好的性质呢?
定理1: \((G^*, D^*)\)为纳什均衡解, 则\(p_{G^*}=p_{data}, \: a.e.\), \(V(G^*, D^*)=m\).
proof:
\]
故需要考虑
\]
可得
\begin{array}{ll}
m, & p_{data} < p_{G^*} \\
0, & p_{data} > p_{G^*} \\
[0, m], & else.
\end{array} \right.
\]
所以
V(G^*, D^*) & = \int_{p_{data} < p_{G^*}} m p_{data}(x) \mathrm{d}x + \int_{p_{data} > p_{G^*}} mp_{G^*}(x)\mathrm{d}x + \int_{p_{data}=p_{G^*}} G^*(x) p_{data}(x) \mathrm{d}x \\
& \le m + m \int_{p_{data} < p_{G^*}} m [p_{data}(x) - p_{G^*}(x)] \mathrm{d}x \le m.
\end{array}
\]
另一方面,
\]
所以
\]
所以\(V(G^*, D^*)=m\), 且\(p_{G^*}=p_{data}, \: a.e.\)
下一个问题是, 这个纳什均衡存在吗, 文中的定理二给出了这个答案, 不过需要一个额外的条件, 这里不多赘述.
文中最后采用的是下面的框架:

即能量函数\(D\)的选择为
\]
EBGAN的更多相关文章
- Generative Adversarial Nets[EBGAN]
0. 背景 Junbo Zhao等人提出的"基于能量的GAN"网络,其将判别器视为一个能量函数而不需要明显的概率解释,该函数可以是一个可训练的损失函数.能量函数是将靠近真实数据流形 ...
- EB-GAN系(Energy-based GAN)
学习总结于国立台湾大学 :李宏毅老师 EB-GAN: Energy-based Generative Adversarial Network MA-GAN:MAGAN: Margin Adaptati ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- Generative Adversarial Nets[BEGAN]
本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...
- Generative Adversarial Nets[content]
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...
- AI人工智能顶级实战工程师 课程大纲
课程名称 内容 阶段一.人工智能基础 — 高等数学必知必会 1.数据分析 "a. 常数eb. 导数c. 梯度d. Taylore. gini系数f. 信息熵与组合数 ...
- TensorFlow练习24: GANs-生成对抗网络 (生成明星脸)
http://blog.topspeedsnail.com/archives/10977 从2D图片生成3D模型(3D-GAN) https://blog.csdn.net/u014365862/ar ...
- (转) GAN应用情况调研
本文转自: https://mp.weixin.qq.com/s?__biz=MzA5MDMwMTIyNQ==&mid=2649290778&idx=1&sn=9816b862 ...
- GANS 资料
https://blog.csdn.net/a312863063/article/details/83512870 目 录第一章 初步了解GANs 3 1. 生成模型与判别模型. 3 2. 对抗网络思 ...
随机推荐
- day04 查找关键字
day04 查找关键字 昨日内容回顾 基本数据类型之日期相关类型 date :年月日 time :时分秒 datetime:年月日时分秒 year :年 基本数据类型之枚举与集合类型 # 枚举 多选一 ...
- E: Unable to fetch some archives, maybe run apt-get update or try with --fix-missing
解决办法:apt-get update或者apt-get cleanapt-get update 或者 apt-get update --fix-missing问题解析1 source本身的问题 根据 ...
- Hive(十一)【压缩、存储】
目录 一.Hadoop的压缩配置 1.MR支持的压缩编码 2.压缩参数配置 3.开启Mapper输出阶段压缩 4.开启Reduceer输出阶段 二.文件存储 1.列式存储和行式存储 2.TextFil ...
- Angular 中 [ngClass]、[ngStyle] 的使用
1.ngStyle 基本用法 1 <div [ngStyle]="{'background-color':'green'}"></<div> 判断添加 ...
- 我在项目中是这样配置Vue的
启用压缩,让页面加载更快 在我们开发的时候,为了方便调试,我们需要使用源码进行调试,但在生产环境,我们追求的更多的是加载更快,体验更好,这时候我们会将代码中的空格注释去掉,对代码进行混淆压缩,只为了让 ...
- Spring同一个类中的注解方法调用AOP失效问题总结
public interface XxxService { // a -> b void a(); void b(); } @Slf4j public class XxxServiceImpl ...
- Android 基础UI组件(二)
1.Spinner 提供一个快速的方法来从一组值中选择一个值.在默认状态Spinner显示当前选择的值.触摸Spinner与所有其他可用值显示一个下拉菜单,可以选择一个新的值. /** * 写死内容: ...
- android转换透明度
比方说 70% 白色透明度. 就用255*0.7=185.5 在把185.5转换成16进制就是B2 你只需要写#B2FFFFFF 如果是黑色就换成6个0就可以了.前2位是控制透明度的.
- RAC(Reactive Cocoa)常见的类
导入ReactiveCocoa框架 在终端,进入Reactive Cocoa文件下 创建podfile 打开该文件 并配置 use_frameworks! pod 'ReactiveCocoa', ' ...
- POST/GET请求中RequestBody和RequestParam的应用场景
POST请求时 @RequestBody --> JSON字符串部分 @RequestParam --> 请求参数部分 application/json格局图 图一.png form- ...