NOIP 模拟 $26\; \rm 幻魔皇$
题解 \(by\;zj\varphi\)
观察可发现一个点向它的子树走能到的白点,黑点数是一个斐波那契数列。
对于白色点对,可以分成两种情况:
两个白点的 \(lca\) 是其中一个白点
两个白点的 \(lca\) 是一个黑点
注意,两个白点的 \(lca\) 不可能是非两个白点之中的白点。
分开计算即可
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x,char t) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar(t);
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar(t);
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=5e3+7,MOD=123456789;
int h[N],f[N],g[N],n;
ll ans;
template<typename T>inline void MD(T &x) {x=x>=MOD?x-MOD:x;}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(n);
f[0]=g[1]=h[1]=1;
for (ri i(2);i<=n;p(i)) {
f[i]=f[i-1]+f[i-2],MD(f[i]);
g[i]=g[i-1]+g[i-2],MD(g[i]);
h[i]=h[i-1]+g[i],MD(h[i]);
}
int l(n<<1);--n;
for (ri i(1);i<=l;p(i)) {
register ll tmp(0);
for (ri j(0);j<=n-i;p(j)) tmp+=f[j],MD(tmp);
ans=tmp*f[i]%MOD;
ri p=cmin(i,n),q=cmax(i-n,1);
for (ri j(q);j<p;p(j))
ans=(ans+(ll)f[j]*f[i-j-1]%MOD*h[cmin(n-j,n-i+j)]%MOD),MD(ans);
print(ans,' ');
}
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $26\; \rm 幻魔皇$的更多相关文章
- NOIP 模拟 $26\; \rm 神炎皇$
题解 \(by\;zj\varphi\) 一道 \(\varphi()\) 的题. 对于一个合法的数对,设它为 \((a*m,b*m)\) 则 \(((a+b)*m)|a*b*m^2\),所以 \(( ...
- NOIP 模拟 $26\; \rm 降雷皇$
题解 \(by\;zj\varphi\) 用树状数组优化一下求最长上升子序列即可. 至于第二问,在求出答案后开 \(n\) 棵线段树,每颗维护当前最长上升子序列长度的方案数. Code #includ ...
- noip模拟26[肾炎黄·酱累黄·换莫黄]
\(noip模拟26\;solutions\) 这个题我做的确实是得心应手,为啥呢,因为前两次考试太难了 T1非常的简单,只不过我忘记了一个定理, T2就是一个小小的线段树,虽然吧我曾经说过我再也不写 ...
- NOIP模拟26「神炎皇·降雷皇·幻魔皇」
T1:神炎皇 又是数学题,气死,根本不会. 首先考虑式子\(a+b=ab\),我们取\(a\)与\(b\)的\(gcd\):\(d\),那么式子就可以改写成: \[(a'+b')*d=a'b' ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- [考试总结]noip模拟26
首先看到这样中二的题目心头一震.... 然而发现又是没有部分分数的一天. 然而正解不会打.... 那还是得要打暴力. 但是这套题目有两个题目只有一个参数. 所以... (滑稽).jpg 然后我就成功用 ...
- 2021.7.28考试总结[NOIP模拟26]
罕见的又改完了. T1 神炎皇 吸取昨天三个出规律的教训,开场打完T2 20pts直接大力打表1h. 但怎么说呢,我不懂欧拉函数.(其实exgcd都忘了 于是只看出最大平方因子,不得不线性筛,爆拿60 ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
随机推荐
- kong配置service和route实现简单API代理
目录 通过konga连接kong实现API接口代理 1. ADD NEW SERVICE 2. ADD ROUTE 3. 验证API 代理 浏览器验证 请求kong api kong使用Admin A ...
- python3安装pp过程
并行计算的目的是将所有的核心都运行起来以提高代码的执行速度,在python中由于存在全局解释器锁(GIL)如果使用默认的python多线程进行并行计算可能会发现代码的执行速度并不会加快,甚至会比使用但 ...
- 家庭账本开发day07
返回数据问题解决,需要按照规定的json数据进行返回. 利用jsonobejact或者GSON工具将对象ArrayList转化为json 格式.然后response.getWriter().write ...
- 【LeetCode】523. 连续的子数组和
523. 连续的子数组和 知识点:数组:前缀和: 题目描述 给你一个整数数组 nums 和一个整数 k ,编写一个函数来判断该数组是否含有同时满足下述条件的连续子数组: 子数组大小 至少为 2 ,且 ...
- Solon 1.5.16 发布,多项细节优化
Solon 是一个轻量的Java基础开发框架.强调,克制 + 简洁 + 开放的原则:力求,更小.更快.更自由的体验.支持:RPC.REST API.MVC.Job.Micro service.WebS ...
- Linux + NodeJS 常用命令
Linux系统常用命令 1.su 由当前用户切换至root用户: 2. su username 切换至某一用户: 3.chmod u+w /etc/sudoers 为/etc/sudoers文件添加写 ...
- Deepin 20.2.2 /UOS 20.2 添加ppa源
由于 工作需要,需要通过PPA安装一些优质的软件包,但是 Deepin 默认不支持PPA源 解决方法 由于Deepin/Uos系统默认是没有安装PPA的那么我们得先安装PPA来支持"add- ...
- nexus 私服 设置本公司代理 记录
index成功
- js精确到指定位数的小数
将数字四舍五入到指定的小数位数.使用 Math.round() 和模板字面量将数字四舍五入为指定的小数位数. 省略第二个参数 decimals ,数字将被四舍五入到一个整数. const round ...
- Springboot+Dubbo使用Zipkin进行接口调用链路追踪
Zipkin介绍: Zipkin是一个分布式链路跟踪系统,可以采集时序数据来协助定位延迟等相关问题.数据可以存储在cassandra,MySQL,ES,mem中.分布式链路跟踪是个老话题,国内也有类似 ...