Atcoder 题面传送门 & 洛谷题面传送门

tsc 考试前 A 的题了,结果到现在才写这篇题解……为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会儿 OI 了((

u1s1 写这篇题解的时候我连题都快忘了。。。

首先设 \(b_i=\dfrac{A_i}{\sum\limits_{j=0}^{2^n-1}A_j}\),其次碰到这种期望类的题目我们考虑套路地设 \(p_i\) 表示异或得到 \(i\) 的概率,那么有 \(p_i=\sum\limits_{j=0}^{2^n-1}p_jb_{i\oplus j}+1\),\(p_0=0\)。这个状态定义是存在后效性的,而高斯消元 \(8^n\) 又显然会超时,因此考虑从这个转移式本身入手进行优化。注意到这个转移式长得有点像异或卷积,因此考虑用异或卷积的形式将这个式子写出来,即 \(p=p\times b+I\),其中 \(\forall i,I_i=1\),异常好理解。

不过事实上这个式子是有个 bug 的,\(p_0=0\),而将 \(p_0\) 带到右边去就不一定等于 \(0\) 了,也就是说左边实际上要加上一个常数 \(X\),即 \(p+X=p\times b+I(X\in\mathbb{R})\)(事实上很多生成函数的题也需要注意常数项的问题,比如说斐波那契数列,这里就不再赘述了)。怎么求这个 \(X\) 的值呢?这里又是一个套路,将左边每一项都变成它的系数和,相当于多项式里的令 \(x=1\),那么可以得到 \((\sum\limits_{i=0}^{2^n-1}p_i)+X=(\sum\limits_{i=0}^{2^n-1}p_i)\times (\sum\limits_{i=0}^{2^n-1}b_i)+(\sum\limits_{i=0}^{2^n-1}I_i)\),而显然 \(\sum\limits_{i=0}^{2^n-1}b_i=1\),故 \(X=\sum\limits_{i=0}^{2^n-1}I_i=2^n\),因此 \(p+2^n=p\times b+I\),简单移个项可得 \(2^n-I=p\times(b-1)\),故 \(p=\dfrac{2^n-I}{b-1}\),把上下两个幂级数 FWTxor 一下相除再 FWTxor 回去即可得到 \(p\)。

还有一个小问题,就是在求逆元的时候有可能会出现分母为 \(0\) 的情况。事实上,由于 \(A_i\le 1000\),因此从所有 \(b_i\) 中任意选出一些出来它们的分子分母都 \(<998244353\),记 \(F=\text{FWT}(b-1)\),那么必然有 \(F_i\le 0(i\ne 0)\),而 \(F_0=-1+\sum\limits_{i=0}^{2^n-1}b_i=0\),因此出错的只可能是 \(F_0\)。不过这个问题很好解决,我们已知 \(p_0=0\),而显然对于一个幂级数 \(F\) FWTxor 后得到的幂级数 \(G\),常数项上加上一个常数 \(C\) 对于 \(F\) 的作用效果就是每一项都加上 \(C\),因此我们只需输出 \(p_i-p_0\) 即可。

const int MAXP=1<<18;
const int MOD=998244353;
int qpow(int x,int e=MOD-2){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,a[MAXP+5],b[MAXP+5],c[MAXP+5];
void FWTxor(int *a,int len,int type){
for(int i=2;i<=len;i<<=1)
for(int j=0;j<len;j+=i)
for(int k=0;k<(i>>1);k++){
int X=a[j+k],Y=a[(i>>1)+j+k];
a[j+k]=1ll*(X+Y)*type%MOD;
a[(i>>1)+j+k]=1ll*(X-Y+MOD)*type%MOD;
}
}
int main(){
scanf("%d",&n);n=1<<n;int sum=0;
for(int i=0;i<n;i++) scanf("%d",&a[i]),sum+=a[i];sum=qpow(sum);
for(int i=0;i<n;i++) a[i]=1ll*a[i]*sum%MOD;a[0]=(a[0]-1+MOD)%MOD;
for(int i=0;i<n;i++) b[i]=MOD-1;b[0]=(b[0]+n)%MOD;
FWTxor(a,n,1);FWTxor(b,n,1);
for(int i=0;i<n;i++) c[i]=1ll*b[i]*qpow(a[i])%MOD;
FWTxor(c,n,MOD+1>>1);
for(int i=0;i<n;i++) printf("%d\n",(c[i]-c[0]+MOD)%MOD);
return 0;
}

Atcoder Grand Contest 034 F - RNG and XOR(FWT)的更多相关文章

  1. Atcoder Grand Contest 030 F - Permutation and Minimum(DP)

    洛谷题面传送门 & Atcoder 题面传送门 12 天以前做的题了,到现在才补/yun 做了一晚上+一早上终于 AC 了,写篇题解纪念一下 首先考虑如果全是 \(-1\)​ 怎么处理.由于我 ...

  2. Atcoder Grand Contest 003 F - Fraction of Fractal(矩阵乘法)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another AGC F,然鹅这次就没能自己想出来了-- 首先需注意到题目中有一个条件叫做"黑格子组成的连通块是四联通的&q ...

  3. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  4. Atcoder Grand Contest 010 C - Cleaning 树贪心(伪)

    C - Cleaning 题目连接: http://agc010.contest.atcoder.jp/tasks/agc010_c Description There is a tree with ...

  5. Atcoder Grand Contest 001 D - Arrays and Palindrome(构造)

    Atcoder 题面传送门 洛谷题面传送门 又是道思维题,又是道把我搞自闭的题. 首先考虑对于固定的 \(a_1,a_2,\dots,a_n;b_1,b_2,\dots,b_m\) 怎样判定是否合法, ...

  6. Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)

    题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...

  7. Atcoder Grand Contest 008 E - Next or Nextnext(乱搞+找性质)

    Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我 ...

  8. AtCoder Grand Contest 002 F:Leftmost Ball

    题目传送门:https://agc002.contest.atcoder.jp/tasks/agc002_f 题目翻译 你有\(n*k\)个球,这些球一共有\(n\)种颜色,每种颜色有\(k\)个,然 ...

  9. AtCoder Grand Contest 017 F - Zigzag

    题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...

随机推荐

  1. 力扣 - 剑指 Offer 45. 把数组排成最小的数

    题目 剑指 Offer 45. 把数组排成最小的数 思路1 将整数数组转化成字符串数组 然后使用Arrays工具类的sort方法帮助我们排序 代码 class Solution { public St ...

  2. F1西班牙大奖赛-加泰罗尼亚赛道地图及简介

    背景 银石双赛结束,第二轮三连赛的最后一场将转战西班牙,第50届F1西班牙大奖赛将于本周末(正赛2020-08-15)在加泰罗尼亚赛道上演. 作为近年来F1承办季前测试的赛道,所有人都对这里再熟悉不过 ...

  3. 第五课第四周实验一:Embedding_plus_Positional_encoding 嵌入向量加入位置编码

    目录 变压器预处理 包 1 - 位置编码 1.1 - 位置编码可视化 1.2 - 比较位置编码 1.2.1 - 相关性 1.2.2 - 欧几里得距离 2 - 语义嵌入 2.1 - 加载预训练嵌入 2. ...

  4. 注解,@Qualifier+@Autowired 和 @Resource

    摘要: 项目中,对于AOP的使用,就是通过用注解来注入的. 更改之前的注解,是使用:@Qualifier+@Autowired   但是,通过这样注解,在项目启动阶段,需要自动扫描的过程是非常缓慢的, ...

  5. the Agiles Scrum Meeting 博客汇总

    the Agiles 团队博客目录 一.Scrum Meeting 1. Alpha the Agiles Scrum Meeting 1 the Agiles Scrum Meeting 2 the ...

  6. elasticsearch的索引操作

    1.创建索引(test_index) curl -XPUT "http://192.168.99.1:9200/test_index" 2.创建索引,指定分片和副本的数量 curl ...

  7. 无网络下,配置yum本地源

    1. 新建一个没有iso镜像文件的虚拟机: 2. 本地上传一个镜像文件(CentOS7的镜像),到虚拟机已创建的目录: 例如:上传一个镜像文件CentOS-7-x86_64-Everything-17 ...

  8. matplotlib散点图

    我们常用的统计图如下: 1.学会绘制散点图 一个小demo: 假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规 ...

  9. SpringBoot:Spring容器的启动过程

    一.简述 Spring的启动过程就是IoC容器的启动过程,本质上就是创建和初始化Bean的工厂(BeanFactory),BeanFactory是整个SpringIoC的核心,Spring使用Bean ...

  10. 手写vue-router & 什么是Vue插件

    博文分享 这篇文章你可以学习到: 实现一个自己的vue-router 了解什么是Vue的插件 学习b站大佬后做的笔记整理和源码实现 1.1.3一步一步带你弄懂vue-router核心原理及实现哔哩哔哩 ...