正题

题目链接:https://www.luogu.com.cn/problem/P7600


题目大意

给出\(n\)个点的一棵树,边有边权,对于每个\(k\)求去掉最小边权和的点使得每个点的度数都不超过\(k\)。

\(1\leq n\leq 10^5\)


题目大意

APIO遇到的原题,和CF1119F一样,感觉要被冲烂。

先考虑暴力的做法,设\(f_{i,0/1}\)表示点\(i\)割不割连接父节点的边时满足子树条件的最小代价,然后对于每个点把每个儿子割掉的代价排个序取最小的一部分就好了,这样时间复杂度\(O(n^2)\)的。

然后优化的话,发现当\(k\)比较大时有很大一部分的点是没有作用的,所以可以考虑删除一些没有用的点。度数小于等于\(k\)的点直接删去,这样的话如果我们就能做到枚举每个没有被删去的点,因为所有点的度数和为\(2n\),这样的复杂度是\(O(n)\)的。

删除的点我们把代价加入父节点处维护的一个堆中,然后每次取出前一部分的点就好了,时间复杂度\(O(n\log n)\)。


还是贴CF那题的代码吧,APIO的那个东西好丑(

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set>
#define ll long long
#define mp(x,y) make_pair(x,y)
using namespace std; const ll N=3e5+10; struct Heap{
priority_queue<ll> q1,q2;ll sum;
void Push(ll x){q1.push(x);sum+=x;return;}
void Pop(ll x){q2.push(x);sum-=x;return;}
ll Top(){
while(!q2.empty()&&q1.top()==q2.top())
q1.pop(),q2.pop();
ll w=q1.top();q1.pop();sum-=w;
return w;
}
ll Size(){return q1.size()-q2.size();}
}q[N];
struct node{
ll to,next,w;
}a[N<<1];
ll n,tot,deg[N],f[N][2],ls[N],p[N],v[N];
set<pair<ll,ll> > s[N];queue<ll> cl,del;vector<ll> ans; void addl(ll x,ll y,ll w){
a[++tot].to=y;deg[y]++;
a[tot].next=ls[x];a[tot].w=w;
ls[x]=tot;return;
}
void dfs(ll x,ll fa,ll k){
f[x][0]=f[x][1]=0;v[x]=k;ll siz=deg[x],S=0;
while(q[x].Size()>siz-k)q[x].Top();
set<pair<ll,ll> >::iterator it;
for(it=s[x].begin();it!=s[x].end();it++){
ll y=(*it).first;
if(y==fa)continue;
dfs(y,x,k);
}
for(it=s[x].begin();it!=s[x].end();it++){
ll y=(*it).first;
if(y==fa)continue;
ll w=f[y][1]-f[y][0]+(*it).second;
if(w<=0){S+=f[y][1]+(*it).second;siz--;continue;}
S+=f[y][0];q[x].Push(w);del.push(w);
}
while(q[x].Size()>max(siz-k,0ll)){
ll w=q[x].Top();
cl.push(w);
}
f[x][0]=S+q[x].sum; while(q[x].Size()>max(siz-k-1,0ll)){
ll w=q[x].Top();
cl.push(w);
}
f[x][1]=S+q[x].sum; while(!cl.empty())q[x].Push(cl.front()),cl.pop();
while(!del.empty())q[x].Pop(del.front()),del.pop();
return;
}
bool cmp(ll x,ll y)
{return deg[x]<deg[y];}
signed main(){
scanf("%lld",&n);
for(ll i=1;i<n;i++){
ll x,y,w;
scanf("%lld%lld%lld",&x,&y,&w);
addl(x,y,w);addl(y,x,w);
s[x].insert(mp(y,w));
s[y].insert(mp(x,w));
}
for(ll i=1;i<=n;i++)p[i]=i;
sort(p+1,p+n+1,cmp);
ll z=1;
memset(v,-1,sizeof(v));
for(ll k=0;k<n;k++){
if(k>=deg[p[n]]){
ans.push_back(0);
continue;
}
while(z<=n&&deg[p[z]]<=k){
ll x=p[z];
for(ll i=ls[x];i;i=a[i].next)
if(deg[a[i].to]>k){
q[a[i].to].Push(a[i].w);
s[a[i].to].erase(mp(x,a[i].w));
}
z++;
}
ll sum=0;
for(ll i=z;i<=n;i++)
if(v[p[i]]!=k)dfs(p[i],-1,k),sum+=f[p[i]][0];
ans.push_back(sum);
}
for(ll i=0;i<ans.size();i++)
printf("%lld ",ans[i]);
}

P7600-[APIO2021]封闭道路【堆,dp】的更多相关文章

  1. 【BZOJ-4524】伪光滑数 堆 + 贪心 (暴力) [可持久化可并堆 + DP]

    4524: [Cqoi2016]伪光滑数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 183  Solved: 82[Submit][Status] ...

  2. 重建道路 树形DP

    重建道路 树形DP 给一棵树,问最少断多少边使得这棵树树最终只有\(p​\)个节点 设计dp状态\(f[u][i][j]\)表示节点\(u\),到第\(i\)个儿子,使\(j\)个节点分离,但是不分离 ...

  3. 洛谷 P1070 道路游戏 DP

    P1070 道路游戏 题意: 有一个环,环上有n个工厂,每个工厂可以生产价格为x的零钱收割机器人,每个机器人在购买后可以沿着环最多走p条边,一秒走一条,每条边不同时间上出现的金币是不同的,问如何安排购 ...

  4. [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案

    考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...

  5. bzoj2500幸福的道路 树形dp+单调队列

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 434  Solved: 170[Submit][Status][Discuss ...

  6. [HNOI2018]道路 --- 树形DP

    [HNOI2018]道路 题目描述: W 国的交通呈一棵树的形状.W 国一共有 \(n-1\) 个城市和 \(n\) 个乡村, 其中城市从 \(1\) 到 \(n-1\) 编号,乡村从 \(1\) 到 ...

  7. JZYZOJ1525 HAOI2012道路 堆优化的dijkstra+pair

    From Tyvj Guest ☆[haoi2012]道路                 描述 Description     C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当 ...

  8. 【bzoj2500】幸福的道路 树形dp+单调队列

    Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...

  9. 【bzoj2500】幸福的道路 树形dp+倍增RMQ+二分

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825389.html 题目描述 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一 ...

随机推荐

  1. SpringBoot集成websocket(java注解方式)

    第一种:SpringBoot官网提供了一种websocket的集成方式 第二种:javax.websocket中提供了元注解的方式 下面讲解简单的第二种 添加依赖 <dependency> ...

  2. MongoDB 数据库创建删除、表(集合) 创建删除、数据增删改查

    使用数据库.创建数据库 use student 如果真的想把这个数据库创建成功,那么必须插入一个数据. 数据库中不能直接插入数据,只能往集合(collections)中插入数据.不需要专门创建集合,只 ...

  3. springboot整合zookeeper实现分布式锁

    目录 01 安装并允许zookeeper 02 springboot应用配置CuratorFramework 03 使用zookeeper实现集群只一个应用实例执行定时任务 04 使用zookeepe ...

  4. COM笔记-关于HRESULT

    HRESULT HRESULT(Here's the RESULT)值分成32位值, HRESULT值中16到30这15个比特位包含的是设备代码.设备代码标识的是可以返回HRESULT返回代码的操作系 ...

  5. 05.SpringMVC之请求映射

    @RequestMapping是一个用来处理请求地址映射的注解,可用于类或者方法上.用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径. @RequestMapping注解有六个属性,下面进 ...

  6. Spring详解(二)------注解配置IOC

    @Configuration:告诉Spring这是一个配置类 @Bean("person")-->作用于方法:给容器中注册一个Bean;类型为返回值的类型 @Componen ...

  7. 关于Ubuntu18.04 linux系统使用安装JDK Mysql

    平台部署 一.安装JDK step1.下载OracleJDKstep2. 解压step3. 加入环境变量 具体操作如下: lemon@ubuntu:~$ cd ~/download/ lemon@ub ...

  8. 【IDE】WebStorm常用快捷键

    WebStorm常用快捷键 1. ctrl + shift + n: 打开工程中的文件,目的是打开当前工程下任意目录的文件. 2. ctrl + j: 输出模板 3. ctrl + b: 跳到变量申明 ...

  9. 链表LinkedList、堆栈Stack、集合Set

    链表LinkedList LinkedList 也像 ArrayList 一样实现了基本的 List 接口,但它在 List 中间执行插入和删除操作时比 ArrayList 更高效.然而,它在随机访问 ...

  10. 【Python机器学习实战】决策树与集成学习(三)——集成学习(1)

    前面介绍了决策树的相关原理和实现,其实集成学习并非是由决策树演变而来,之所以从决策树引申至集成学习是因为常见的一些集成学习算法与决策树有关比如随机森林.GBDT以及GBDT的升华版Xgboost都是以 ...