Technology Document Guide of TensorRT
Technology Document Guide of TensorRT
本示例支持指南概述了GitHub和产品包中包含的所有受支持的TensorRT 7.2.1示例。TensorRT示例在推荐程序、机器翻译、字符识别、图像分类和对象检测等领域有特殊帮助。
有关TensorRT开发文档,请参阅TensorRT归档文件。
- 1. Introduction
下面的示例展示了如何在许多用例中使用TensorRT,同时突出显示接口的不同功能。




1.1. Getting Started With C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples package directory as well as on GitHub. The following C++ samples are shipped with TensorRT.
- “Hello World” For TensorRT
- Building A Simple MNIST Network Layer By Layer
- Importing The TensorFlow Model And Running Inference
- “Hello World” For TensorRT From ONNX
- Building And Running GoogleNet In TensorRT
- Building An RNN Network Layer By Layer
- Performing Inference In INT8 Using Custom Calibration
- Performing Inference In INT8 Precision
- Adding A Custom Layer To Your Network In TensorRT
- Object Detection With Faster R-CNN
- Object Detection With A TensorFlow SSD Network
- Movie Recommendation Using Neural Collaborative Filter (NCF)
- Movie Recommendation Using MPS (Multi-Process Service)
- Object Detection With SSD
- “Hello World” For Multilayer Perceptron (MLP)
- Specifying I/O Formats Using The Reformat Free I/O APIs
- Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
- Digit Recognition With Dynamic Shapes In TensorRT
- Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
- Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network
- Object Detection With A TensorFlow Faster R-CNN Network
- Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT1
Getting Started With C++ Samples
每个C++样本包括一个GitHub中的README.md文件,该文件提供有关示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Running C++ Samples on Linux
如果使用Debian文件安装TensorRT,在构建C++示例之前,首先复制/usr/src/tensorrt到新目录。如果使用tar文件安装了TensorRT,那么示例位于{TAR_EXTRACT_PATH}/samples中。要生成所有示例,然后运行其中一个示例,请使用以下命令:
$ cd <samples_dir>
$ make -j4
$ cd ../bin
$ ./<sample_bin>
Running C++ Samples on Windows
Windows上的所有C++样本都作为VisualStudio解决方案文件提供。若要生成示例,请打开其相应的VisualStudio解决方案文件并生成解决方案。输出可执行文件将在(ZIP_EXTRACT_PATH)\bin中生成。然后可以直接或通过visual studio运行可执行文件。
1.2. Getting Started With Python Samples
可以在/usr/src/tensorrt/samples/python包目录中找到Python示例。以下Python示例随TensorRT一起提供。
- Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
- “Hello World” For TensorRT Using TensorFlow And Python
- “Hello World” For TensorRT Using PyTorch And Python
- Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
- Object Detection With The ONNX TensorRT Backend In Python
- Object Detection With SSD In Python
- INT8 Calibration In Python
- Refitting An Engine In Python
- TensorRT Inference Of ONNX Models With Custom Layers In Python
Getting Started With Python Samples
每个Python示例都包含README.md文件。请参阅
/usr/src/tensorrt/samples/python/<sample-name>/README.md文件获取有关示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Running Python Samples
要运行其中一个Python示例,该过程通常包括两个步骤:
- Install the sample requirements:
- python<x> -m pip install -r requirements.txt
where python<x> is either python2 or python3.
- Run the sample code with the data directory provided if the TensorRT sample data is not in the default location. For example:
python<x> sample.py [-d DATA_DIR]
For more information on running samples, see the README.md file included with the sample.
Technology Document Guide of TensorRT的更多相关文章
- Oracle E-Business Suite Maintenance Guide Release 12.2(Patching Procedures)
更多内容参考: http://docs.oracle.com/cd/E51111_01/current/acrobat/122ebsmt.zip Preparing for Patching For ...
- TensorRT 介绍
引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...
- Javascript 常用函数【1】
1:基础知识 1 创建脚本块 1: <script language=”JavaScript”> 2: JavaScript code goes here 3: </script&g ...
- vue+.netcore可支持业务代码扩展的开发框架 VOL.Vue 2.0版本发布
框架介绍 这是一个基于vue.element-ui.iview..netcore3.1 可支持前端.后台动态扩展业务代码快速开发框架. 框架内置定制开发的代码生成器,生成的代码不需要复制也不需要更改, ...
- 《Advanced Bash-scripting Guide》学习(十四):HERE Document和cat <<EOF
本文所选的例子来自于<Advanced Bash-scripting Gudie>一书,译者 杨春敏 黄毅 #here document cat <<EOF \z EOF ca ...
- The Practical Guide to Empathy Maps: 10-Minute User Personas
That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...
- SlickUpload Quick Start Guide
Quick Start Guide The SlickUpload quick start demonstrates how to install SlickUpload in a new or ex ...
- IMS Global Learning Tools Interoperability™ Implementation Guide
Final Version 1.1 Date Issued: 13 March 2012 Latest version: http://www.imsglobal ...
- P6 EPPM Installation and Configuration Guide 16 R1 April 2016
P6 EPPM Installation and Configuration Guide 16 R1 April 2016 Contents About Installing and ...
随机推荐
- 手动脱PeCompact 2.20壳实战
作者:Fly2015 PeCompact壳又是一个没有听说过的壳,需要脱壳的程序是吾爱破解培训的第一课的选修作业四.最近对脱壳有点上瘾了,当然也遭受了脱壳受挫的无奈,但是比较幸运还是把这个壳给搞了. ...
- 深入学习Android系统上mount命令的使用
博客链接:http://blog.csdn.net/qq1084283172/article/details/52493227 在Android系统的预装apk病毒和elf病毒的清除时,经常需要先获取 ...
- LA3905流星
题意: 在一个二维平面上有n个流星,每个流星有自己的初始位置和速度,有一个照相机,张相机的可视范围是一个矩形框,左下角(0,0)右上角(w ,h),然后问你相机的矩形内出现的最多的流星数是 ...
- 基于Xposed Hook实现的Android App的协议算法分析小工具-CryptoFucker
本文博客地址:https://blog.csdn.net/QQ1084283172/article/details/80962121 在进行Android应用的网络协议分析的时候,不可避免涉及到网络传 ...
- UVA11520填充正方形
题意: 给你一个n*n的矩阵,让你往里面添加大写字母,矩阵有的字母已经给填好了,然后要求是每个格子都不能与他相邻的格子的大写字母相同,如果有多个答案,输出从上到下,从左到右所连接的成的那个n ...
- 【python】Leetcode每日一题-矩阵置零
[python]Leetcode每日一题-矩阵置零 [题目描述] 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 .请使用 原地 算法. 进阶: 一个直观的解 ...
- maven简单入门
maven简单部署webapp项目流程及注意事项 maven了解 简介: Maven 是一个项目管理工具,它包含了一个项目对象模型 (POM: Project Object Model),一组标准集合 ...
- 一道codeforces题目引发的差分学习
Codeforces Round #688 (Div. 2) 题目:B. Suffix Operations 题意:给定一个长为n的数组a,你可以进行两种操作:1).后缀+1; 2)后缀-1: ...
- What are CBR, VBV and CPB?
转自:https://codesequoia.wordpress.com/2010/04/19/what-are-cbr-vbv-and-cpb/ It's common mistake to to ...
- a标签美化
具体选中a标签给予宽高,这样才能在整个a标签范围内才能跳转 但是因为a标签是行内元素,所以要用display:blcok 转化为块状元素 且a标签不继承父元素的color 对a标签设置颜色,要选中a标 ...