[DB] MapReduce
概述
- 大数据计算的核心思想:移动计算比移动数据更划算
- MapReduce既是一个编程模型,又是一个计算框架
- 包含Map和Reduce两个过程
- 终极目标:用SQL语句分析大数据(Hive、SparkSQL,将SQL语句转换为MR程序)
- 用于解决海量无结构、半结构化数据的批处理问题,例如生成倒排索引、计算网页的pagerank、日志分析等
- 在设计上缺乏针对海量结构化数据进行交互式分析处理的优化考虑
特性
- 序列化
- java序列化:实现序列化接口(标识接口)
Student.java


1 package serializable;
2
3 import java.io.Serializable;
4
5 public class Student implements Serializable{
6 private int stuID;
7 private String stuName;
8 public int getStuID() {
9 return stuID;
10 }
11 public void setStuID(int stuID) {
12 this.stuID = stuID;
13 }
14 public String getStuName() {
15 return stuName;
16 }
17 public void setStuName(String stuName) {
18 this.stuName = stuName;
19 }
20 }
TestMain.java


1 package serializable;
2
3 import java.io.FileOutputStream;
4 import java.io.ObjectOutputStream;
5 import java.io.OutputStream;
6
7 import serializable.Student;
8
9 public class TestMain {
10
11 public static void main(String[] args) throws Exception{
12 // 创建学生对象
13 Student s = new Student();
14 s.setStuID(1);
15 s.setStuName("Tom");
16
17 // 输出对象到文件
18 OutputStream out = new FileOutputStream("F:\\eclipse-workspace\\student.ooo");
19 ObjectOutputStream oos = new ObjectOutputStream(out);
20 oos.writeObject(s);
21
22 oos.close();
23 out.close();
24 }
25 }
- MapReduce序列化:核心接口Writable,实现了Writeble的类的对象可作为MapReduce的key和value
- 读取员工数据,生成员工对象,直接输出到HDFS
- hadoop jar s2.jar /scott/emp.csv /output/0910/s2
- MapReduce序列化:核心接口Writable,实现了Writeble的类的对象可作为MapReduce的key和value
EmpInfoMain.java


1 import org.apache.hadoop.conf.Configuration;
2 import org.apache.hadoop.fs.Path;
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.mapreduce.Job;
5 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
6 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
7
8 public class EmpInfoMain {
9
10 public static void main(String[] args) throws Exception {
11 Job job = Job.getInstance(new Configuration());
12 job.setJarByClass(EmpInfoMain.class);
13
14 job.setMapperClass(EmpInfoMapper.class);
15 job.setMapOutputKeyClass(IntWritable.class);
16 job.setMapOutputValueClass(Emp.class);
17
18 job.setOutputKeyClass(IntWritable.class);
19 job.setOutputKeyClass(Emp.class);
20
21 FileInputFormat.setInputPaths(job, new Path(args[0]));
22 FileOutputFormat.setOutputPath(job, new Path(args[1]));
23
24 job.waitForCompletion(true);
25 }
26 }
EmpInfoMapper.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.io.LongWritable;
5 import org.apache.hadoop.io.Text;
6 import org.apache.hadoop.mapreduce.Mapper;
7
8 public class EmpInfoMapper extends Mapper<LongWritable, Text, IntWritable, Emp>{
9
10 @Override
11 protected void map(LongWritable key1, Text value1,
12 Context context)
13 throws IOException, InterruptedException {
14 //数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
15 String data = value1.toString();
16
17 // 分词
18 String[] words = data.split(",");
19
20 // 生成员工对象
21 Emp emp = new Emp();
22 emp.setEmpno(Integer.parseInt(words[0]));
23 emp.setEname(words[1]);
24 emp.setJob(words[2]);
25 emp.setMgr(Integer.parseInt(words[3]));
26 emp.setHiredate(words[4]);
27 emp.setSal(Integer.parseInt(words[5]));
28 emp.setComm(Integer.parseInt(words[6]));
29 emp.setDeptno(Integer.parseInt(words[7]));
30
31 // 输出员工对象
32 context.write(new IntWritable(emp.getEmpno()), emp);
33 }
34 }
Emp.java


1 import java.io.DataInput;
2 import java.io.DataOutput;
3 import java.io.IOException;
4
5 import org.apache.hadoop.io.Writable;
6
7 public class Emp implements Writable{
8 private int empno;
9 private String ename;
10 private String job;
11 private int mgr;
12 private String hiredate;
13 private int sal;
14 private int comm;
15 private int deptno;
16
17 @Override
18 public void readFields(DataInput input)
19 throws IOException {
20 // 实现反序列化,从输入流中读取对象(与输出流顺序一样)
21 this.empno = input.readInt();
22 this.ename = input.readUTF();
23 this.job = input.readUTF();
24 this.mgr = input.readInt();
25 this.hiredate = input.readUTF();
26 this.sal = input.readInt();
27 this.comm = input.readInt();
28 this.deptno = input.readInt();
29 }
30
31 @Override
32 public void write(DataOutput output) throws IOException {
33 // 实现序列化,把对象输出到输出流
34 output.writeInt(this.empno);
35 output.writeUTF(this.ename);
36 output.writeUTF(this.job);
37 output.writeInt(this.mgr);
38 output.writeUTF(this.hiredate);
39 output.writeInt(this.sal);
40 output.writeInt(this.comm);
41 output.writeInt(this.deptno);
42 }
43
44 public int getEmpno() {
45 return empno;
46 }
47
48 public void setEmpno(int empno) {
49 this.empno = empno;
50 }
51
52 public String getEname() {
53 return ename;
54 }
55
56 public void setEname(String ename) {
57 this.ename = ename;
58 }
59
60 public String getJob() {
61 return job;
62 }
63
64 public void setJob(String job) {
65 this.job = job;
66 }
67
68 public int getMgr() {
69 return mgr;
70 }
71
72 public void setMgr(int mgr) {
73 this.mgr = mgr;
74 }
75
76 public String getHiredate() {
77 return hiredate;
78 }
79
80 public void setHiredate(String hiredate) {
81 this.hiredate = hiredate;
82 }
83
84 public int getSal() {
85 return sal;
86 }
87
88 public void setSal(int sal) {
89 this.sal = sal;
90 }
91
92 public int getComm() {
93 return comm;
94 }
95
96 public void setComm(int comm) {
97 this.comm = comm;
98 }
99
100 public int getDeptno() {
101 return deptno;
102 }
103
104 public void setDeptno(int deptno) {
105 this.deptno = deptno;
106 }
107
108 @Override
109 public String toString() {
110 return "Emp [empno=" + empno + ", ename=" + ename
111 + ", sal=" + sal + ", deptno=" + deptno
112 + "]";
113 }
114
115 }
- 求部门工资总额
- 由于实现了序列化接口,员工可作为key和value
- 相比之前的程序更加简洁
- 对于大对象可能产生性能问题
- 求部门工资总额
EmpInfoMain.java


1 import org.apache.hadoop.conf.Configuration;
2 import org.apache.hadoop.fs.Path;
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.mapreduce.Job;
5 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
6 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
7
8 public class EmpInfoMain {
9
10 public static void main(String[] args) throws Exception {
11 Job job = Job.getInstance(new Configuration());
12 job.setJarByClass(EmpInfoMain.class);
13
14 job.setMapperClass(EmpInfoMapper.class);
15 job.setMapOutputKeyClass(IntWritable.class);
16 job.setMapOutputValueClass(Emp.class); // 输出就是员工对象
17
18 job.setOutputKeyClass(IntWritable.class);
19 job.setOutputValueClass(Emp.class);
20
21 FileInputFormat.setInputPaths(job, new Path(args[0]));
22 FileOutputFormat.setOutputPath(job, new Path(args[1]));
23
24 job.waitForCompletion(true);
25 }
26
27 }
SalaryTotalMapper.java


1 import java.io.IOException;
2 import org.apache.hadoop.io.IntWritable;
3 import org.apache.hadoop.io.LongWritable;
4 import org.apache.hadoop.io.Text;
5 import org.apache.hadoop.mapreduce.Mapper;
6
7 // k2:部门号 v2:员工对象
8 public class SalaryTotalMapper extends Mapper<LongWritable, Text, IntWritable, Emp> {
9
10 @Override
11 protected void map(LongWritable key1, Text value1, Context context)
12 throws IOException, InterruptedException {
13 // 数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
14 String data = value1.toString();
15
16 // 分词
17 String[] words = data.split(",");
18
19 // 生成员工对象
20 Emp emp = new Emp();
21 emp.setEmpno(Integer.parseInt(words[0]));
22 emp.setEname(words[1]);
23 emp.setJob(words[2]);
24 emp.setMgr(Integer.parseInt(words[3]));
25 emp.setHiredate(words[4]);
26 emp.setSal(Integer.parseInt(words[5]));
27 emp.setComm(Integer.parseInt(words[6]));
28 emp.setDeptno(Integer.parseInt(words[7]));
29
30 // 输出员工对象 k2:部门号 v2:员工对象
31 context.write(new IntWritable(emp.getDeptno()), emp);
32 }
33 }
SalaryTotalReducer.java


1 import java.io.IOException;
2 import org.apache.hadoop.io.IntWritable;
3 import org.apache.hadoop.mapreduce.Reducer;
4
5 public class SalaryTotalReducer extends Reducer<IntWritable, Emp, IntWritable, IntWritable> {
6
7 @Override
8 protected void reduce(IntWritable k3, Iterable<Emp> v3,Context context) throws IOException, InterruptedException {
9 int total = 0;
10
11 //取出员工薪水,并求和
12 for(Emp e:v3){
13 total = total + e.getSal();
14 }
15 context.write(k3, new IntWritable(total));
16 }
17 }
- 排序
- 规则:按照Key2排序
- 基本数据类型
- 数字:默认升序
- 自定义比较器:MyNumberComparator.java
- 主程序中添加比较器:job.setSortComparatorClass(MyNumberCompatator.class)
- 数字:默认升序
MyNumberComparator.java


1 import org.apache.hadoop.io.IntWritable;
2
3 //针对数字创建自己的比较规则,执行降序排序
4 public class MyNumberComparator extends IntWritable.Comparator {
5
6 @Override
7 public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
8 // TODO Auto-generated method stub
9 return -super.compare(b1, s1, l1, b2, s2, l2);
10 }
11 }
- 字符串:默认字典顺序
MyTextComparator.java


1 import org.apache.hadoop.io.Text;
2
3 // 针对Text定义比较规则
4 public class MyTextComparator extends Text.Comparator{
5
6 @Override
7 public int compare(byte[] b1, int s1, int l1, byte[] b2,
8 int s2, int l2) {
9 return -super.compare(b1, s1, l1, b2, s2, l2);
10 }
11 }
- 对象
- SQL排序:order by + 列名 / 表达式 / 列的别名 / 序号 / 多个列(desc作用于最近一列)
- 前提:对象必须是Key2;必须实现Writable接口;必须是可排序对象(类似Java对象排序,要实现Comparable<T>)
- 对象
Student.java


1 //学生对象:按照学生的age年龄进行排序
2 public class Student implements Comparable<Student>{
3
4 private int stuID;
5 private String stuName;
6 private int age;
7
8 @Override
9 public String toString() {
10 return "Student [stuID=" + stuID + ", stuName=" + stuName + ", age=" + age + "]";
11 }
12
13 @Override
14 public int compareTo(Student o) {
15 // 定义排序规则:按照学生的age年龄进行排序
16 if(this.age >= o.getAge()){
17 return 1;
18 }else{
19 return -1;
20 }
21 }
22
23 public int getStuID() {
24 return stuID;
25 }
26 public void setStuID(int stuID) {
27 this.stuID = stuID;
28 }
29 public String getStuName() {
30 return stuName;
31 }
32 public void setStuName(String stuName) {
33 this.stuName = stuName;
34 }
35 public int getAge() {
36 return age;
37 }
38 public void setAge(int age) {
39 this.age = age;
40 }
41
42 }
StudentMain.java


1 import java.util.Arrays;
2
3 public class StudentMain {
4
5 public static void main(String[] args) {
6 //创建几个学生对象
7 Student s1 = new Student();
8 s1.setStuID(1);
9 s1.setStuName("Tom");
10 s1.setAge(24);
11
12 Student s2 = new Student();
13 s2.setStuID(2);
14 s2.setStuName("Mary");
15 s2.setAge(26);
16
17 Student s3 = new Student();
18 s3.setStuID(3);
19 s3.setStuName("Mike");
20 s3.setAge(25);
21
22 //生成一个数组
23 Student[] list = {s1,s2,s3};
24
25 //排序
26 Arrays.sort(list);
27
28 //输出
29 for(Student s:list){
30 System.out.println(s);
31 }
32 }
33 }
- 一个/多个列排序
Emp.java


1 import java.io.DataInput;
2 import java.io.DataOutput;
3 import java.io.IOException;
4
5 import org.apache.hadoop.io.Writable;
6 import org.apache.hadoop.io.WritableComparable;
7
8 //代表员工
9 //数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
10 public class Emp implements WritableComparable<Emp>{
11
12 private int empno;//员工号
13 private String ename; //员工姓名
14 private String job; //职位
15 private int mgr; //经理的员工号
16 private String hiredate;//入职日期
17 private int sal; //月薪
18 private int comm; //奖金
19 private int deptno; //部门号
20
21 // @Override
22 // public int compareTo(Emp o) {
23 // // 定义自己的排序规则:一个列的排序
24 // // 按照薪水进行排序
25 // if(this.sal >= o.getSal()){
26 // return 1;
27 // }else{
28 // return -1;
29 // }
30 // }
31
32 @Override
33 public int compareTo(Emp o) {
34 // 定义自己的排序规则:多个列的排序
35 // 先按照部门号进行排序,再按照薪水进行排序
36 if(this.deptno > o.getDeptno()){
37 return 1;
38 }else if(this.deptno < o.getDeptno()){
39 return -1;
40 }
41
42 //再按照薪水进行排序
43 if(this.sal >= o.getSal()){
44 return 1;
45 }else{
46 return -1;
47 }
48 }
49
50 @Override
51 public String toString() {
52 return "Emp [empno=" + empno + ", ename=" + ename + ", sal=" + sal + ", deptno=" + deptno + "]";
53 }
54
55 @Override
56 public void readFields(DataInput input) throws IOException {
57 //实现反序列化,从输入流中读取对象
58 this.empno = input.readInt();
59 this.ename = input.readUTF();
60 this.job = input.readUTF();
61 this.mgr = input.readInt();
62 this.hiredate = input.readUTF();
63 this.sal = input.readInt();
64 this.comm = input.readInt();
65 this.deptno = input.readInt();
66 }
67
68 @Override
69 public void write(DataOutput output) throws IOException {
70 // 实现序列化,把对象输出到输出流
71 output.writeInt(this.empno);
72 output.writeUTF(this.ename);
73 output.writeUTF(this.job);
74 output.writeInt(this.mgr);
75 output.writeUTF(this.hiredate);
76 output.writeInt(this.sal);
77 output.writeInt(this.comm);
78 output.writeInt(this.deptno);
79 }
80
81
82 public int getEmpno() {
83 return empno;
84 }
85 public void setEmpno(int empno) {
86 this.empno = empno;
87 }
88 public String getEname() {
89 return ename;
90 }
91 public void setEname(String ename) {
92 this.ename = ename;
93 }
94 public String getJob() {
95 return job;
96 }
97 public void setJob(String job) {
98 this.job = job;
99 }
100 public int getMgr() {
101 return mgr;
102 }
103 public void setMgr(int mgr) {
104 this.mgr = mgr;
105 }
106 public String getHiredate() {
107 return hiredate;
108 }
109 public void setHiredate(String hiredate) {
110 this.hiredate = hiredate;
111 }
112 public int getSal() {
113 return sal;
114 }
115 public void setSal(int sal) {
116 this.sal = sal;
117 }
118 public int getComm() {
119 return comm;
120 }
121 public void setComm(int comm) {
122 this.comm = comm;
123 }
124 public int getDeptno() {
125 return deptno;
126 }
127 public void setDeptno(int deptno) {
128 this.deptno = deptno;
129 }
130
131 }
EmpSortMapper.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.io.LongWritable;
5 import org.apache.hadoop.io.NullWritable;
6 import org.apache.hadoop.io.Text;
7 import org.apache.hadoop.mapreduce.Mapper;
8
9 /*
10 * 一定要把Emp作为key2
11 * 没有value2,返回null值
12 */
13
14 public class EmpSortMapper extends Mapper<LongWritable, Text, Emp, NullWritable> {
15
16 @Override
17 protected void map(LongWritable key1, Text value1, Context context)
18 throws IOException, InterruptedException {
19 // 数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
20 String data = value1.toString();
21
22 //分词
23 String[] words = data.split(",");
24
25 //生成员工对象
26 Emp emp = new Emp();
27 emp.setEmpno(Integer.parseInt(words[0]));
28 emp.setEname(words[1]);
29 emp.setJob(words[2]);
30 emp.setMgr(Integer.parseInt(words[3]));
31 emp.setHiredate(words[4]);
32 emp.setSal(Integer.parseInt(words[5]));
33 emp.setComm(Integer.parseInt(words[6]));
34 emp.setDeptno(Integer.parseInt(words[7]));
35
36 //输出员工对象 k2:员工对象 v2:空值
37 context.write(emp, NullWritable.get());
38 }
39 }
EmpSortMain.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.fs.Path;
5 import org.apache.hadoop.io.IntWritable;
6 import org.apache.hadoop.io.NullWritable;
7 import org.apache.hadoop.mapreduce.Job;
8 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
9 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
10
11 public class EmpSortMain {
12
13 public static void main(String[] args) throws Exception {
14 Job job = Job.getInstance(new Configuration());
15 job.setJarByClass(EmpSortMain.class);
16
17 job.setMapperClass(EmpSortMapper.class);
18 job.setMapOutputKeyClass(Emp.class); //k2 是员工对象
19 job.setMapOutputValueClass(NullWritable.class); // v2:是空值
20
21 job.setOutputKeyClass(Emp.class);
22 job.setOutputValueClass(NullWritable.class);
23
24 FileInputFormat.setInputPaths(job, new Path(args[0]));
25 FileOutputFormat.setOutputPath(job, new Path(args[1]));
26
27 job.waitForCompletion(true);
28
29 }
30
31 }
- 分区(Partition)
- 关系型数据库分区
- 分区1:sal<=3000,分区2:3000<sal<=5000,分区3:sal>5000
- 查询薪水1000~2000的员工,只扫描分区1即可
- Hash分区:根据数值的Hash结果进行分区,如果一样就放入同一个分区中(数据尽量打散,避免热块)
- Redis Cluster、Hive 桶表、MongoDB 分布式路由
- MR分区
- 根据Map的输出<key2 value2>进行分区
- 默认情况下,MR的输出只有一个分区(一个分区就是一个文件)
- 按部门号分区:不同部门的员工放到不同文件中
- 关系型数据库分区
Emp.java


1 import java.io.DataInput;
2 import java.io.DataOutput;
3 import java.io.IOException;
4
5 import org.apache.hadoop.io.Writable;
6
7 //代表员工
8 //数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
9 public class Emp implements Writable{
10
11 private int empno;//员工号
12 private String ename; //员工姓名
13 private String job; //职位
14 private int mgr; //经理的员工号
15 private String hiredate;//入职日期
16 private int sal; //月薪
17 private int comm; //奖金
18 private int deptno; //部门号
19
20
21 @Override
22 public String toString() {
23 return "Emp [empno=" + empno + ", ename=" + ename + ", sal=" + sal + ", deptno=" + deptno + "]";
24 }
25
26 @Override
27 public void readFields(DataInput input) throws IOException {
28 //实现反序列化,从输入流中读取对象
29 this.empno = input.readInt();
30 this.ename = input.readUTF();
31 this.job = input.readUTF();
32 this.mgr = input.readInt();
33 this.hiredate = input.readUTF();
34 this.sal = input.readInt();
35 this.comm = input.readInt();
36 this.deptno = input.readInt();
37 }
38
39 @Override
40 public void write(DataOutput output) throws IOException {
41 // 实现序列化,把对象输出到输出流
42 output.writeInt(this.empno);
43 output.writeUTF(this.ename);
44 output.writeUTF(this.job);
45 output.writeInt(this.mgr);
46 output.writeUTF(this.hiredate);
47 output.writeInt(this.sal);
48 output.writeInt(this.comm);
49 output.writeInt(this.deptno);
50 }
51
52
53 public int getEmpno() {
54 return empno;
55 }
56 public void setEmpno(int empno) {
57 this.empno = empno;
58 }
59 public String getEname() {
60 return ename;
61 }
62 public void setEname(String ename) {
63 this.ename = ename;
64 }
65 public String getJob() {
66 return job;
67 }
68 public void setJob(String job) {
69 this.job = job;
70 }
71 public int getMgr() {
72 return mgr;
73 }
74 public void setMgr(int mgr) {
75 this.mgr = mgr;
76 }
77 public String getHiredate() {
78 return hiredate;
79 }
80 public void setHiredate(String hiredate) {
81 this.hiredate = hiredate;
82 }
83 public int getSal() {
84 return sal;
85 }
86 public void setSal(int sal) {
87 this.sal = sal;
88 }
89 public int getComm() {
90 return comm;
91 }
92 public void setComm(int comm) {
93 this.comm = comm;
94 }
95 public int getDeptno() {
96 return deptno;
97 }
98 public void setDeptno(int deptno) {
99 this.deptno = deptno;
100 }
101 }
MyPartitionerMain.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.fs.Path;
5 import org.apache.hadoop.io.IntWritable;
6 import org.apache.hadoop.mapreduce.Job;
7 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
8 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
9
10 public class MyPartitionerMain {
11
12 public static void main(String[] args) throws Exception {
13 Job job = Job.getInstance(new Configuration());
14 job.setJarByClass(MyPartitionerMain.class);
15
16 job.setMapperClass(MyPartitionerMapper.class);
17 job.setMapOutputKeyClass(IntWritable.class); //k2 是部门号
18 job.setMapOutputValueClass(Emp.class); // v2输出就是员工对象
19
20 //加入分区规则
21 job.setPartitionerClass(MyPartitioner.class);
22 //指定分区的个数
23 job.setNumReduceTasks(3);
24
25 job.setReducerClass(MyPartitionerReducer.class);
26 job.setOutputKeyClass(IntWritable.class);
27 job.setOutputValueClass(Emp.class);
28
29 FileInputFormat.setInputPaths(job, new Path(args[0]));
30 FileOutputFormat.setOutputPath(job, new Path(args[1]));
31
32 job.waitForCompletion(true);
33 }
34 }
MyPartitionerMapper.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.io.LongWritable;
5 import org.apache.hadoop.io.Text;
6 import org.apache.hadoop.mapreduce.Mapper;
7
8 // k2 部门号 v2 员工
9 public class MyPartitionerMapper extends Mapper<LongWritable, Text, IntWritable, Emp> {
10
11 @Override
12 protected void map(LongWritable key1, Text value1, Context context)
13 throws IOException, InterruptedException {
14 // 数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
15 String data = value1.toString();
16
17 //分词
18 String[] words = data.split(",");
19
20 //生成员工对象
21 Emp emp = new Emp();
22 emp.setEmpno(Integer.parseInt(words[0]));
23 emp.setEname(words[1]);
24 emp.setJob(words[2]);
25 emp.setMgr(Integer.parseInt(words[3]));
26 emp.setHiredate(words[4]);
27 emp.setSal(Integer.parseInt(words[5]));
28 emp.setComm(Integer.parseInt(words[6]));
29 emp.setDeptno(Integer.parseInt(words[7]));
30
31 //输出员工对象 k2:部门号 v2:员工对象
32 context.write(new IntWritable(emp.getDeptno()), emp);
33 }
34 }
MyPartitionerReducer.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.mapreduce.Reducer;
5
6 //就是同一个部门的员工
7 public class MyPartitionerReducer extends Reducer<IntWritable, Emp, IntWritable, Emp> {
8
9 @Override
10 protected void reduce(IntWritable k3, Iterable<Emp> v3,Context context) throws IOException, InterruptedException {
11 // 直接输出
12 for(Emp e:v3){
13 context.write(k3, e);
14 }
15 }
16 }
- 合并(Combiner)
- 一种特殊的Reducer,部署在Mapper端
- 在Mapper端执行一次合并,用于减少Mapper输出到Reducer的数据量,提高效率
- 在wordCountMain.java中添加job.setCombinerClass(WordCountReducer.class)
- 谨慎使用Combiner,有些情况不能使用(如求平均值)
- 不管有没有Combiner,都不能改变Map和Reduce对应的数据类型
- 程序出错,可将Reducer的k3 类型改为DoubleWritable
AvgSalaryMain.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.conf.Configuration;
4 import org.apache.hadoop.fs.Path;
5 import org.apache.hadoop.io.DoubleWritable;
6 import org.apache.hadoop.io.IntWritable;
7 import org.apache.hadoop.io.Text;
8 import org.apache.hadoop.mapreduce.Job;
9 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
10 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
11
12 public class AvgSalaryMain {
13
14 public static void main(String[] args) throws Exception {
15 //1、创建任务、指定任务的入口
16 Job job = Job.getInstance(new Configuration());
17 job.setJarByClass(AvgSalaryMain.class);
18
19 //2、指定任务的map和map输出的数据类型
20 job.setMapperClass(AvgSalaryMapper.class);
21 job.setMapOutputKeyClass(Text.class);
22 job.setMapOutputValueClass(IntWritable.class);
23
24 //加入Combiner
25 job.setCombinerClass(AvgSalaryReducer.class);
26
27 //3、指定任务的reducer和reducer输出的类型
28 job.setReducerClass(AvgSalaryReducer.class);
29 job.setOutputKeyClass(Text.class);
30 job.setOutputValueClass(DoubleWritable.class);
31
32 //4、指定任务输入路径和输出路径
33 FileInputFormat.setInputPaths(job, new Path(args[0]));
34 FileOutputFormat.setOutputPath(job, new Path(args[1]));
35
36 //5、执行任务
37 job.waitForCompletion(true);
38
39 }
40 }
AvgSalaryMapper.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.io.LongWritable;
5 import org.apache.hadoop.io.Text;
6 import org.apache.hadoop.mapreduce.Mapper;
7
8 // k2 常量 v2:薪水
9 public class AvgSalaryMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
10
11 @Override
12 protected void map(LongWritable key1, Text value1, Context context)
13 throws IOException, InterruptedException {
14 // 数据:7654,MARTIN,SALESMAN,7698,1981/9/28,1250,1400,30
15 String data = value1.toString();
16
17 //分词
18 String[] words = data.split(",");
19
20 //输出 k2 常量 v2 薪水
21 context.write(new Text("salary"), new IntWritable(Integer.parseInt(words[5])));
22 }
23 }
AvgSalaryReducer.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.DoubleWritable;
4 import org.apache.hadoop.io.IntWritable;
5 import org.apache.hadoop.io.Text;
6 import org.apache.hadoop.mapreduce.Reducer;
7
8 // v4:平均工资
9 public class AvgSalaryReducer extends Reducer<Text, IntWritable, Text, DoubleWritable> {
10
11 @Override
12 protected void reduce(Text k3, Iterable<IntWritable> v3,Context context) throws IOException, InterruptedException {
13 int total = 0;
14 int count = 0;
15
16 for(IntWritable salary:v3){
17 //工资求和
18 total = total + salary.get();
19 //人数加一
20 count ++;
21 }
22
23 //输出
24 context.write(new Text("The avg salary is :"), new DoubleWritable(total/count));
25 }
26
27 }
Shuffle
- MapReduce的核心
- map输出后到reduce接收前
- Hadoop 3.x以前: 会有数据落地(I/O操作)
- Spark只有两次I/O操作(读+写),中间运算在内存中完成
Yarn
- MapReduce 2.0 后运行在Yarn上
- 默认NodeManager和DataNode在一台机器上
MRUnit
- 类似JUnit
- 添加相应jar包,去掉mockito-all-1.8.5.jar
- 用Hadoop在windows上的安装包设置环境变量
WordCountMapper.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.io.LongWritable;
5 import org.apache.hadoop.io.Text;
6 import org.apache.hadoop.mapreduce.Mapper;
7
8 //实现Map的功能
9 // k1 v1 k2 v2
10 public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
11
12 @Override
13 protected void map(LongWritable key1, Text value1, Context context)
14 throws IOException, InterruptedException {
15 /*
16 * context: map的上下文
17 * 上文:HDFS
18 * 下文:Reducer
19 */
20 //得到数据 I love Beijing
21 String data = value1.toString();
22
23 //分词
24 String[] words = data.split(" ");
25
26 //输出 k2 v2
27 for(String w:words){
28 // k2 v2
29 context.write(new Text(w), new IntWritable(1));
30 }
31 }
32 }
WordCountReducer.java


1 import java.io.IOException;
2
3 import org.apache.hadoop.io.IntWritable;
4 import org.apache.hadoop.io.Text;
5 import org.apache.hadoop.mapreduce.Reducer;
6
7 //实现Reducer的功能
8 // k3 v3 k4 v4
9 public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
10
11 @Override
12 protected void reduce(Text k3, Iterable<IntWritable> v3,Context context) throws IOException, InterruptedException {
13 /*
14 * context是Reducer的上下文
15 * 上文:Map
16 * 下文:HDFS
17 */
18 int total = 0;
19 for(IntWritable v:v3){
20 //求和
21 total = total + v.get();
22 }
23
24 //输出 k4 v4
25 context.write(k3, new IntWritable(total));
26 }
27 }
WordCountUnitTest.java


1 import java.util.ArrayList;
2 import java.util.List;
3
4 import org.apache.hadoop.io.IntWritable;
5 import org.apache.hadoop.io.LongWritable;
6 import org.apache.hadoop.io.Text;
7 import org.apache.hadoop.mrunit.mapreduce.MapDriver;
8 import org.apache.hadoop.mrunit.mapreduce.MapReduceDriver;
9 import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
10 import org.junit.Test;
11
12 public class WordCountUnitTest {
13
14 @Test
15 public void testMapper() throws Exception{
16 /*
17 * java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries
18 * 设置环境变量就可以,用到Hadoop在windows上的安装包
19 */
20 System.setProperty("hadoop.home.dir", "E:\\tools\\hadoop-common-2.2.0-bin-master");
21
22 //创建一个Map的对象:测试对象
23 WordCountMapper mapper = new WordCountMapper();
24
25 //创建一个MapDriver进行单元测试
26 MapDriver<LongWritable, Text, Text, IntWritable> driver = new MapDriver<>(mapper);
27
28 //指定map的输入:k1 v1
29 driver.withInput(new LongWritable(1), new Text("I love Beijing"));
30
31 //指定map的输出: k2 v2 ------> 我们期望得到结果
32 driver.withOutput(new Text("I"), new IntWritable(1))
33 .withOutput(new Text("love"), new IntWritable(1))
34 .withOutput(new Text("Beijing"), new IntWritable(1));
35
36 //执行单元测试:对比 期望的结果 和 实际的结果
37 driver.runTest();
38 }
39
40 @Test
41 public void testReducer() throws Exception{
42 System.setProperty("hadoop.home.dir", "D:\\temp\\hadoop-2.4.1\\hadoop-2.4.1");
43
44 //创建一个测试对象
45 WordCountReducer reducer = new WordCountReducer();
46
47 // 创建一个Driver
48 ReduceDriver<Text, IntWritable, Text, IntWritable> driver = new ReduceDriver<>(reducer);
49
50 //指定Driver的输入:k3 v3
51 //构造一下v3 是一个集合
52 List<IntWritable> value3 = new ArrayList<>();
53 value3.add(new IntWritable(1));
54 value3.add(new IntWritable(1));
55 value3.add(new IntWritable(1));
56
57 driver.withInput(new Text("Beijing"), value3);
58
59 //指定输出的数据 指定 k4 v4
60 driver.withOutput(new Text("Beijing"), new IntWritable(3));
61
62 //执行单元测试
63 driver.runTest();
64 }
65
66 @Test
67 public void testJob() throws Exception{
68 System.setProperty("hadoop.home.dir", "D:\\temp\\hadoop-2.4.1\\hadoop-2.4.1");
69
70 //创建测试的对象
71 WordCountMapper mapper = new WordCountMapper();
72 WordCountReducer reducer = new WordCountReducer();
73
74 //创建一个Driver
75 //MapReduceDriver<K1, V1, K2, V2, K4, V4>
76 MapReduceDriver<LongWritable, Text, Text, IntWritable,Text, IntWritable>
77 driver = new MapReduceDriver<>(mapper,reducer);
78
79 //指定Map的输入
80 driver.withInput(new LongWritable(1), new Text("I love Beijing"))
81 .withInput(new LongWritable(4), new Text("I love China"))
82 .withInput(new LongWritable(6), new Text("Beijing is the capital of China"));
83
84 //指定Reducer的输出
85 driver.withOutput(new Text("Beijing"), new IntWritable(2))
86 .withOutput(new Text("China"), new IntWritable(2))
87 .withOutput(new Text("I"), new IntWritable(2))
88 .withOutput(new Text("capital"), new IntWritable(1))
89 .withOutput(new Text("is"), new IntWritable(1))
90 .withOutput(new Text("love"), new IntWritable(2))
91 .withOutput(new Text("of"), new IntWritable(1))
92 .withOutput(new Text("the"), new IntWritable(1));
93
94 driver.runTest();
95 }
96 }
参考
Hadoop 新 MapReduce 框架 Yarn 详解
https://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/
基于MapReduce模型的范围查询分析优化技术研究
https://www.doc88.com/p-7708885315214.html
[DB] MapReduce的更多相关文章
- [DB] MapReduce 例题
词频统计(word count) 一篇文章用哈希表统计即可 对互联网所有网页的词频进行统计(Google搜索引擎的需求),无法将所有网页读入内存 map:将单词提取出来,对每个单词输入一个<wo ...
- Hadoop 中利用 mapreduce 读写 mysql 数据
Hadoop 中利用 mapreduce 读写 mysql 数据 有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP ...
- MapReduce
2016-12-21 16:53:49 mapred-default.xml mapreduce.input.fileinputformat.split.minsize 0 The minimum ...
- 在MongoDB的MapReduce上踩过的坑
太久没动这里,目前人生处于一个新的开始.这次博客的内容很久前就想更新上来,但是一直没找到合适的时间点(哈哈,其实就是懒),主要内容集中在使用Mongodb时的一些隐蔽的MapReduce问题: 1.R ...
- MongoDB进行MapReduce的数据类型
有很长一段时间没更新博客了,因为最近都比较忙,今天算是有点空闲吧.本文主要是介绍MapReduce在MongoDB上的使用,它与sql的分组.聚集类似,也是先map分组,再用reduce统计,最后还可 ...
- MongoDB聚合运算之mapReduce函数的使用(11)
mapReduce 随着"大数据"概念而流行. 其实mapReduce的概念非常简单, 从功能上说,相当于RDBMS的 group 操作 mapReduce的真正强项在哪? 答:在 ...
- mongo DB的一般操作
最近接触了一些mongoDB .将一些指令操作记录下来,便于查询和使用 登录 [root@logs ~]# mongo -u loguser -p log123456 --authentication ...
- Sqoop:Could not load db driver class: com.microsoft.sqlserver.jdbc.SQLServerDriver
Sqoop version:1.4.6-cdh Hadoop version:2.6.0-cdh5.8.2 场景:使用Sqoop从MSSqlserver导数据 虽然1.4.6的官网说 Even if ...
- mapreduce导出MSSQL的数据到HDFS
今天想通过一些数据,来测试一下我的<基于信息熵的无字典分词算法>这篇文章的正确性.就写了一下MapReduce程序从MSSQL SERVER2008数据库里取数据分析.程序发布到hadoo ...
随机推荐
- 设计Web页面(2)
1.前面我们新建了一个空白的ASP.NET网页,那么接下来这章我们就讲一下设计Web页面 2.布局页面有两种方法,一种是通过Table表格来布局页面窗体,另一种是通过CSS+DIV来布局窗体,其中作为 ...
- 记一次metasploitable2内网渗透之samba服务的攻击
80端口中对应一些web靶场,在这里不记录 111端口的利用是向rpcbind服务的UDP套接字发送60字节载荷,便可填充目标内存,搞崩主机系统.在这里也不记录 Samba服务简介 Samba是在Li ...
- Linux下禁用笔记本触摸板
1 概述 在Linux下禁用触摸板的方法有很多,这里列举三种: 图形界面配置关闭 modprobe关闭 xinput关闭 2 图形界面配置关闭 笔者的环境为Manjaro+Xfce,其他的桌面也应该类 ...
- shell脚本 5 sed和awk
文本处理三剑客 在 Shell 下使用这些正则表达式处理文本最多的命令有下面几个工具: 命令 描述 grep 默认不支持扩展表达式,加-E 选项开启 ERE.如果不加-E 使用花括号要加转义符\{\} ...
- golang面向对象分析
说道面向对象(OOP)编程, 就不得不提到下面几个概念: 抽象 封装 继承 多态 其实有个问题Is Go An Object Oriented Language?, 随便谷歌了一下, 你就发现讨论这个 ...
- php抽象类,接口,特性的比较
php抽象类 抽象方法必须被子类继承实现,所以不能为私有,只能是受保护的或公有的; 抽象类子类的方法访问控制级别必须和抽象类相等或更宽松.例如,父类的抽象方法是受保护的,子类实现时则必须为受保护的或者 ...
- composer 遇见问题 整理
修改镜像源:改为阿里云镜像 composer config -g repo.packagist composer https://mirrors.aliyun.com/composer/ 报错:Con ...
- CSS3中Animation为同一个元素添加多个动画效果
CSS3 Animation 并未提供 给一个元素同时添加多个动画效果的方法,就是说一个元素,只能给它定义一个动画效果,不能同时定义. 需求说明比如说,我想实现一个这样的动画效果: 一颗星星从上往下滑 ...
- POJ3160强连通+spfa最长路(不错)
题意: 给你一个有向图,每个点上有一个权值,可正可负,然后给你一些链接关系,让你找到一个起点,从起点开始走,走过的边可以在走,但是拿过权值的点就不能再拿了,问最多能拿到多少权值? 思路: ...
- Windows核心编程 第26章 窗口消 息
窗 口 消 息 Wi n d o w s允许一个进程至多建立10 000个不同类型的用户对象(User object):图符.光标.窗口类.菜单.加速键表等等.当一个线程调用一个函数来建立某个对象时, ...