【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)

题面

BZOJ

CF

洛谷

辣鸡BZOJ卡常数!!!!!!

辣鸡BZOJ卡常数!!!!!!

辣鸡BZOJ卡常数!!!!!!

所以我程序在BZOJ过不了

题解

朴素的按照\(k\)划分阶段的\(dp\)可以在\(CF\)上过的。

发现当选择的\(k\)增长时,减少的代价也越来越少,

所以可以凸优化一下,这样复杂度少个\(k\)

变成了\(O(nlogw)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 4040
#define double int
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Node{int x,l,r;}Q[MAX];
int h,t;
int n,K,s[MAX][MAX];
int f[MAX],g[MAX];
int Trans(int i,int j,int C){return f[j]+(s[j][j]-s[i][j]*2+s[i][i])/2+C;}
void calc(int C)
{
f[0]=g[0]=h=0;Q[h=t=1]=(Node){0,1,n};
for(int i=1;i<=n;++i)
{
while(h<t&&Q[h].r<i)++h;
f[i]=Trans(i,Q[h].x,C);g[i]=g[Q[h].x]+1;
while(h<t&&i>=Q[h].r)++h;
if(Trans(n,Q[t].x,C)<=Trans(n,i,C))continue;
while(h<t&&Trans(Q[t].l,Q[t].x,C)>Trans(Q[t].l,i,C))--t;
int l=Q[t].l,r=Q[t].r,ret=Q[t].r+1;
while(l<=r)
{
int mid=(l+r)>>1;
if(Trans(mid,i,C)<Trans(mid,Q[t].x,C))ret=mid,r=mid-1;
else l=mid+1;
}
if(ret>n)continue;
Q[t].r=ret-1;Q[++t]=(Node){i,ret,n};
}
}
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+read();
int l=0,r=s[n][n],ans=1e9;
while(l<=r)
{
int mid=(l+r)>>1;
calc(mid);
if(g[n]>K)l=mid+1;
else r=mid-1,ans=f[n]-K*mid;
}
cout<<ans<<endl;
return 0;
}

【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)的更多相关文章

  1. BZOJ5311,CF321E 贞鱼

    题意 Problem 5311. -- 贞鱼 5311: 贞鱼 Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 150[Subm ...

  2. BZOJ5311 贞鱼(动态规划+wqs二分+决策单调性)

    大胆猜想答案随k变化是凸函数,且有决策单调性即可.去粘了份fread快读板子才过. #include<iostream> #include<cstdio> #include&l ...

  3. 【CF321E】+【bzoj5311】贞鱼

    决策单调性 + WQS二分 我们首先列出转移式: \(f[i]=Min(f[j]+Sum[j+1 , i])\) 首先我们考虑如果让一段区间的小鱼在一起的代价怎么预处理,我们可以对于一个上三角矩阵求个 ...

  4. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  5. CF321E Ciel and Gondolas

    题意:给定序列,将其分成k段.如果[l, r]在一段,那么每对不相同的i,j∈[l, r]都会有ai,j的代价.求最小总代价. 解:提供两种方案.第三种去bzoj贞鱼的n²算法. 决策单调性优化: 对 ...

  6. 【wqs二分 || 决策单调性】cf321E. Ciel and Gondolas

    把状态看成层,每层决策单调性处理 题目描述 题目大意 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半.这不?他们遇到了大麻烦!n只贞鱼到陆地上乘车,现在有k辆汽车可以租用.由于贞鱼们 ...

  7. CF321E Ciel and Gondolas 【决策单调性dp】

    题目链接 CF321E 题解 题意:将\(n\)个人分成\(K\)段,每段的人两两之间产生代价,求最小代价和 容易设\(f[k][i]\)表示前\(i\)个人分成\(k\)段的最小代价和 设\(val ...

  8. ROJ 1166 超级贞鱼

    1166: 超级贞鱼 Time Limit: 1 Sec  Memory Limit: 128 MB [Submit][Status] 传送门 Description 马达加斯加贞鱼是一种神奇的双脚贞 ...

  9. 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼

    目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...

随机推荐

  1. 统计学习方法c++实现之二 k近邻法

    统计学习方法c++实现之二 k近邻算法 前言 k近邻算法可以说概念上很简单,即:"给定一个训练数据集,对新的输入实例,在训练数据集中找到与这个实例最邻近的k个实例,这k个实例的多数属于某个类 ...

  2. [C++]值传递和引用传递

    概念 在定义函数时函数括号中的变量名成为形式参数,简称形参或虚拟参数: 在主调函数中调用一个函数时,该函数括号中的参数名称为实际参数,简称实参,实参可以是常量.变量或表达式. 注意: C语言中实参和形 ...

  3. 微信小程序自定义 tabbar

    一定的需求情况下,无法使用小程序原生的 tabbar 的时候,需要自行实现一个和 tabbar 功能一模一样的自制组件. 查阅了海量的博客和文档之后,亲自踩坑.总结了三种在不使用微信小程序原生 tab ...

  4. Hyperledger Fabric -- gossip 协议

    Hyperledger gossip   本文记述了Hyperledger Fabric 中 一种网络数据同步协议--gossip,它的主要作用是致力于账本数据的安全传输,保证不同节点之间状态的同步和 ...

  5. Centos7 zabbix 分布式监控

    分布式监控 zabbix Server ===> zabbix agent (只能同一个局域网监控)     分布式监控:         a. 分担压力,降低负载         b. 多机房 ...

  6. D.王者荣耀交流协会——PSP Daily(测评人:贾男男)

    D.王者荣耀交流协会——PSP Daily(测评人:贾男男) 一.基于NABCD评论作品,及改进建议 每个小组评论其他小组beta发布的作品.1.根据(不限于)NABCD评论作品的选题;2.评论作品对 ...

  7. Daily Scrum 1 --团队项目所需时间估计以及任务分配

    考虑到所有的任务不可能逐一细化分配给成员,我们将需要完成的任务进行了大致的分配.任务所需要的具体实现可以参看<学霸网站NABC> 所需要的总时间一共为44h. 我们会在以后的每日任务中进行 ...

  8. Daily Scrumming 2015.10.21(Day 2)

    今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 配置ruby与rails环境 配置mysql与数据库用户管理 配置apache2环境 学习rails Ac ...

  9. 20172308 实验二《Java面向对象程序设计 》实验报告

    20172308 2017-2018-2 <程序设计与数据结构>实验2报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 周亚杰 学号:20172308 实验教师:王 ...

  10. 08慕课网《进击Node.js基础(一)》事件events

    引用events模块中的EventEmitter 事件的监听和发射 相同的事件发射数量有限,可以通过setMaxListeners设置峰值 var EventEmitter = require('ev ...