51nod 1290 Counting Diff Pairs | 莫队 树状数组

题面

一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[j]中,有多少对数,abs(A[i] - A[j]) <= K(abs表示绝对值)。

题解

莫队!//其实我就是搜索“51nod + 莫队”找到的这道题……

七级算法题!

一道320分!

你值得拥有!

题解就是……用个普通的莫队,加上树状数组来统计符合条件的数个数,就好啦。

当增加/删除一个数的时候,统计能和它组成合法数对的数的个数,然后对答案进行相应的增/减。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
#define space putchar(' ')
#define enter putchar('\n') const int N = 50005, B = 233;
int n, d, m, a[N], lst[N], idx, tol[N], tor[N], tr[N], pl = 1, pr;
ll res, ans[N];
#define bel(x) (((x) - 1) / B + 1)
struct query {
int id, l, r;
bool operator < (const query &b) const {
return bel(l) == bel(b.l) ? r < b.r : l < b.l;
}
} q[N];
void init(){
sort(lst + 1, lst + n + 1);
idx = unique(lst + 1, lst + n + 1) - lst - 1;
for(int i = 1; i <= n; i++)
a[i] = lower_bound(lst + 1, lst + idx + 1, a[i]) - lst;
int l = 1, r = 1;
for(int i = 1; i <= idx; i++){
while(l < i && lst[i] - lst[l] > d) l++;
while(r < idx && lst[r + 1] - lst[i] <= d) r++;
tol[i] = l, tor[i] = r;
}
}
void add(int p, int x){
while(p <= idx) tr[p] += x, p += p & -p;
}
int ask(int p){
int res = 0;
while(p) res += tr[p], p -= p & -p;
return res;
}
int getres(int x){
return ask(tor[x]) - ask(tol[x] - 1);
}
int main(){
read(n), read(d), read(m);
for(int i = 1; i <= n; i++)
read(a[i]), lst[i] = a[i];
init();
for(int i = 1; i <= m; i++)
q[i].id = i, read(q[i].l), q[i].l++, read(q[i].r), q[i].r++;
sort(q + 1, q + m + 1);
for(int i = 1; i <= m; i++){
while(pl > q[i].l) res += getres(a[--pl]), add(a[pl], 1);
while(pr < q[i].r) res += getres(a[++pr]), add(a[pr], 1);
while(pl < q[i].l) add(a[pl], -1), res -= getres(a[pl++]);
while(pr > q[i].r) add(a[pr], -1), res -= getres(a[pr--]);
ans[q[i].id] = res;
}
for(int i = 1; i <= m; i++)
write(ans[i]), enter;
return 0;
}

51nod 1290 Counting Diff Pairs | 莫队 树状数组的更多相关文章

  1. 51nod 1290 Counting Diff Pairs 莫队 + bit

    一个长度为N的正整数数组A,给出一个数K以及Q个查询,每个查询包含2个数l和r,对于每个查询输出从A[i]到A[j]中,有多少对数,abs(A[i] - A[j]) <= K(abs表示绝对值) ...

  2. bzoj3236 作业 莫队+树状数组

    莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  3. BZOJ_3289_Mato的文件管理_莫队+树状数组

    BZOJ_3289_Mato的文件管理_莫队+树状数组 Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号 .为了防止他人 ...

  4. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  5. COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)

    题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...

  6. bzoj 3289: Mato的文件管理 莫队+树状数组

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...

  7. 【BZOJ3460】Jc的宿舍(树上莫队+树状数组)

    点此看题面 大致题意: 一棵树,每个节点有一个人,他打水需要\(T_i\)的时间,每次询问两点之间所有人去打水的最小等待时间. 伪·强制在线 这题看似强制在线,但实际上,\(pre\ mod\ 2\) ...

  8. HihoCoder 1488 : 排队接水(莫队+树状数组)

    描述 有n个小朋友需要接水,其中第i个小朋友接水需要ai分钟. 由于水龙头有限,小Hi需要知道如果为第l个到第r个小朋友分配一个水龙头,如何安排他们的接水顺序才能使得他们等待加接水的时间总和最小. 小 ...

  9. BZOJ 3236 莫队+树状数组

    思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...

随机推荐

  1. 快速稀疏角点光流框架(Fast sparse corner optical flow framework)

    光流适用在连续的图像系列(视频流)中,描述本身或画面目标的运动状态:在目标跟踪.运动分析.甚至slam中都有广泛应用. opencv里就有不少光流算法,其中很经典也是当前被调用最多的的Lucas-Ka ...

  2. [Processing]在画布上写文本

    准备工作 这一步只是我强迫症犯了哈,这个随意,画几根线而已.每一小格10个像素,中格50,大格100像素 void setup() { size(,); } void draw() { backgro ...

  3. mac zsh不自动加载~/.bashrc

    修改了bashrc, 新开一个终端都要source一下才起作用. 网上有说需要在 . bash_profile加载一次.bashrc. 但是这个和我的问题不一样. 我用的是zsh,需要修改~/.zsh ...

  4. Linux速成(二)

    四.Linux 系统目录结构 树状目录结构: 以下是对这些目录的解释: /bin:bin是Binary的缩写, 这个目录存放着最经常使用的命令. /boot:这里存放的是启动Linux时使用的一些核心 ...

  5. 【坚持】Selenium+Python学习之从读懂代码开始 DAY6

    2018/05/23 Python内置的@property装饰器 [@property](https://www.programiz.com/python-programming/property) ...

  6. 【转载】pycharm常用快捷键

    来源: (https://blog.csdn.net/weixin_41059146/article/details/78826163) 1.编辑(Editing) Ctrl + Space    基 ...

  7. sqli-labs学习笔记 DAY5

    DAY 5 sqli-labs lesson 26a 闭合符号为单引号和括号,并且不回显错误,如果服务器是Linux,尝试%a0代替空格,这里尝试使用布尔型 数据库名长度:?id=1')&&a ...

  8. 反爬虫和抗DDOS攻击技术实践

    导语 企鹅媒体平台媒体名片页反爬虫技术实践,分布式网页爬虫技术.利用人工智能进行人机识别.图像识别码.频率访问控制.利用无头浏览器PhantomJS.Selenium 进行网页抓取等相关技术不在本文讨 ...

  9. Beta阶段基于NABCD评论作品

    组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶  刘佳瑞  公冶令鑫  杨磊  刘欣  张宇  卢帝同 一.拉格朗日2018--<飞词> 1.1.NABCD分析 N(Need,需求):该小 ...

  10. EDK_II环境搭建与测试

    一. 环境准备 Windows 10 (64位)专业版 Visual Studio 2010旗舰版(默认路径安装) Mscrosoft SDKs 7.0A BIOS综合包里的EDK开发环境 二. 实验 ...