特征提取:
特征降维的手段
抛弃对结果没有联系的特征
抛弃对结果联系较少的特征
以这种方式,降低维度 数据集的特征过多,有些对结果没有任何关系,
这个时候,将没有关系的特征删除,反而能获得更好的预测结果 下面使用决策树,预测泰坦尼克号幸存情况,
对不同百分比的筛选特征,进行学习和预测,比较准确率

python3学习使用api

使用到联网的数据集,我已经下载到本地,可以到我的git中下载数据集

git: https://github.com/linyi0604/MachineLearning

代码:

 import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn import feature_selection
from sklearn.cross_validation import cross_val_score
import numpy as np
import pylab as pl '''
特征提取:
特征降维的手段
抛弃对结果没有联系的特征
抛弃对结果联系较少的特征
以这种方式,降低维度 数据集的特征过多,有些对结果没有任何关系,
这个时候,将没有关系的特征删除,反而能获得更好的预测结果 下面使用决策树,预测泰坦尼克号幸存情况,
对不同百分比的筛选特征,进行学习和预测,比较准确率
''' # 1 准备数据
titanic = pd.read_csv("../data/titanic/titanic.txt")
# 分离数据特征与目标
y = titanic["survived"]
x = titanic.drop(["row.names", "name", "survived"], axis=1)
# 对缺失值进行补充
x['age'].fillna(x['age'].mean(), inplace=True)
x.fillna("UNKNOWN", inplace=True) # 2 分割数据集 25%用于测试 75%用于训练
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) # 3 类别型特征向量化
vec = DictVectorizer()
x_train = vec.fit_transform(x_train.to_dict(orient='record'))
x_test = vec.transform(x_test.to_dict(orient='record'))
# 输出处理后向量的维度
# print(len(vec.feature_names_)) # 474 # 4 使用决策树对所有特征进行学习和预测
dt = DecisionTreeClassifier(criterion='entropy')
dt.fit(x_train, y_train)
print("全部维度的预测准确率:", dt.score(x_test, y_test)) # 0.8206686930091185 # 5 筛选前20%的特征,使用相同配置的决策树模型进行评估性能
fs = feature_selection.SelectPercentile(feature_selection.chi2, percentile=20)
x_train_fs = fs.fit_transform(x_train, y_train)
x_test_fs = fs.transform(x_test)
dt.fit(x_train_fs, y_train)
print("前20%特征的学习模型预测准确率:", dt.score(x_test_fs, y_test)) # 0.8237082066869301 # 6 通过交叉验证 按照固定间隔百分比筛选特征, 展示性能情况
percentiles = range(1, 100, 2)
results = []
for i in percentiles:
fs = feature_selection.SelectPercentile(feature_selection.chi2, percentile=i)
x_train_fs = fs.fit_transform(x_train, y_train)
scores = cross_val_score(dt, x_train_fs, y_train, cv=5)
results = np.append(results, scores.mean())
# print(results)
'''
[0.85063904 0.85673057 0.87501546 0.88622964 0.86284271 0.86489384
0.87303649 0.86689342 0.87098536 0.86690373 0.86895485 0.86083282
0.86691404 0.86488353 0.86895485 0.86792414 0.86284271 0.86995465
0.86486291 0.86385281 0.86384251 0.86894455 0.86794475 0.86690373
0.86488353 0.86489384 0.86590394 0.87300557 0.86995465 0.86793445
0.87097506 0.86998557 0.86692435 0.86892393 0.86997526 0.87098536
0.87198516 0.86691404 0.86691404 0.87301587 0.87202639 0.8648423
0.86386312 0.86388374 0.86794475 0.8618223 0.85877139 0.86285302
0.86692435 0.8577819 ]
'''
# 找到最佳性能的筛选百分比
opt = np.where(results == results.max())[0][0]
print("最高性能的筛选百分比是:%s%%" % percentiles[opt]) # pl.plot(percentiles, results)
pl.xlabel("特征筛选的百分比")
pl.ylabel("准确率")
pl.show()

生成的准确率图:

机器学习之路:python 特征降维 特征筛选 feature_selection的更多相关文章

  1. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  2. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  3. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  4. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  5. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  6. 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】

    2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...

  7. AI学习---特征工程【特征抽取、特征预处理、特征降维】

    学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主 ...

  8. 特征降维之PCA

    目录 PCA思想 问题形式化表述 PCA之协方差矩阵 协方差定义 矩阵-特征值 PCA运算步骤 PCA理论解释 最大方差理论 性质 参数k的选取 数据重建 主观理解 应用 代码示例 PCA思想 PCA ...

  9. 如何用Python做自动化特征工程

    机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用 ...

随机推荐

  1. HDU 1259 ZJUTACM

    解题报告:就用了一个swap函数就行了. #include<cstdio> #include<iostream> int main() { int x,y,T,n; scanf ...

  2. 【leetcode 简单】 第一百零九题 最小移动次数使数组元素相等

    给定一个长度为 n 的非空整数数组,找到让数组所有元素相等的最小移动次数.每次移动可以使 n - 1 个元素增加 1. 示例: 输入: [1,2,3] 输出: 3 解释: 只需要3次移动(注意每次移动 ...

  3. C# FileStream MemoryStream BufferedStream StreamReader StreamWriter

    FileStream读取文件 , array.Length);//读取流中数据把它写到字节数组中file.Close();//关闭流string str =Encoding.Default.GetSt ...

  4. 工具推荐:ATSCAN,功能强大的Perl脚本扫描器

    工具推荐:ATSCAN,功能强大的Perl脚本扫描器 使用perl语言编写的开源的扫描器,功能丰富强大,除了基本的tcp和udp端口扫描之外,还可以搜索wordpress.joomla等网站并进行口令 ...

  5. ECMAScript——(二)

    1.语法 区分大小写 变量是弱类型(定义变量时只用 var 运算符,可以将它初始化为任意值.) 每行结尾的分号可有可无(建议写上) 注释与Java一样 括号表示代码块 2.变量 变量可以不用声明,变量 ...

  6. PL/SQ连接oracle,L 新建表的时候, virtual那一列是什么意思

    Virtual标示该栏位是否为虚拟列. https://www.2cto.com/database/201306/216917.html

  7. 在使用FastJson开发遇到的的坑

    1.list中放入同一个对象,会出现内存地址引用{"$ref":"#[0]"},后台可以识别,但是前台不会识别 @Test public void testLi ...

  8. Mysql Limit操作

    oracle : ||   mysql: contact    contact_ws 拼接   Font Size: Large | Medium | Small select * from tabl ...

  9. Luogu P2310 【loidc,看看海】

    各位大佬都用的排序和杨颙大定理,蒟蒻的我怎么也不会做(瑟瑟发抖),那么,就来一发主席树吧.我们知道线段树可以维护区间,平衡树可以维护值域那么,我们可以用线段树套平衡树来解决这个区间值域的问题线段树套平 ...

  10. 利用sys.dm_db_index_physical_stats查看索引碎片等数据

    我们都知道,提高sql server的数据查询速度,最有效的方法,就是为表创建索引,而索引在对数据进行新增,删除,修改的时候,会产生索引碎片,索引碎片多了,就需要重新组织或重新生成索引,以达到索引的最 ...