luoguP4101 [HEOI2014]人人尽说江南好 结论
题目大意:
给定\(n\)堆初始大小为\(1\)的石堆
每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\)
询问先手必赢?
不妨设我们是先手,且最后我们必胜
我们考虑构造局面\(m, m, m, m,m, ..., n\;mod\;m\)
我们从左往右依次合并出这些\(m\)堆
如果对手帮我们在当前堆上合并\(1\),那就是自寻死路
否则,如果另外的合并出了一个大小为\(2\)的堆
如果$m - $ 当前堆的大小 \(\ge 2\),那么我们把这个对手新合并出的堆合并到自己的堆上
否则,我们另取一个\(1\)合并到当前堆,然后直接取对手合并出的堆为新的需要合并的堆
所以,到达最终方案的步数是确定的,算出步数然后判断即可
(有些地方有些细微的差异,就自行讨论一下吧QAQ)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
int main() {
int T = read();
while(T --) {
int n = read(), m = read();
int t = n / m * (m - 1) + (n % m > 0) * (n % m - 1);
printf("%d\n", (t & 1) ? 0 : 1);
}
return 0;
}
luoguP4101 [HEOI2014]人人尽说江南好 结论的更多相关文章
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 470 Solved: 336[Submit][Sta ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- P4101 [HEOI2014]人人尽说江南好
题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
- BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】
题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...
随机推荐
- [转]google gflags 库完全使用
简单介绍 gflags 是 google 开源的用于处理命令行参数的项目. 安装编译 项目主页:gflags ➜ ~ git clone https://github.com/gflags/gflag ...
- 富文本存储型XSS的模糊测试之道
富文本存储型XSS的模糊测试之道 凭借黑吧安全网漏洞报告平台的公开案例数据,我们足以管中窥豹,跨站脚本漏洞(Cross-site Script)仍是不少企业在业务安全风险排查和修复过程中需要对抗的“大 ...
- 缓存数据库-redis安装和配置
一:redis安装 python操作redis分为两部分,一为安装redis程序 二是安装支持python操作redis的模块 1)安装redis redis 官方网站:http://www.redi ...
- python网络编程-socket“粘包”(小数据发送问题)
一:什么是粘包 “粘包”, 即服务器端你调用时send 2次,但你send调用时,数据其实并没有立刻被发送给客户端,而是放到了系统的socket发送缓冲区里,等缓冲区满了.或者数据等待超时了,数据才会 ...
- Python基础 - 系统进程调用
subprocess模块 近期发现还有一个更好的用于取代subprocess的库,sh,也是openstack当中使用的库.
- [android]解析XML文件的方法有三种:PULL,DOM,SAM
PULL 的工作原理: XML pull提供了开始元素和结束元素.当某个元素开始时,可以调用parser.nextText从XML文档中提取所有字符数据.当解析到一个文档结束时,自动生成EndDocu ...
- AdvStringGrid 标题头
标题头内容: 字体: 标题头高度: 头的对齐方式:
- 2018JAVA复习摘要
由于公司内部原因,2018年感觉自己可能会换个新环境:虽然时间尚未确定,但还是得提前做好防范,毕竟面试复习是需要时间好好准备才能拿到自己理想的offer.打算从清明节之后开始好复习基本知识要点,先整理 ...
- T-sql语句修改数据库逻辑名、数据库名、物理名(sql2000)
--更改MSSQL数据库物理文件名Sql语句的写法 --注意:要在活动监视器里面确保没有进程连接你要改名的数据库!!!!!!!!!!!!!!!!!!!! -- Sql语句如下 USE master - ...
- IntelliJ IDEA 2018.2.2及以下版本破解方法
破解文件下载地址:https://pan.baidu.com/s/1FKeGekyIHFUWaWi6tk2eEw =========================================== ...