题目大意:

给定\(n\)堆初始大小为\(1\)的石堆

每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\)

询问先手必赢?


不妨设我们是先手,且最后我们必胜

我们考虑构造局面\(m, m, m, m,m, ..., n\;mod\;m\)

我们从左往右依次合并出这些\(m\)堆

如果对手帮我们在当前堆上合并\(1\),那就是自寻死路

否则,如果另外的合并出了一个大小为\(2\)的堆

如果$m - $ 当前堆的大小 \(\ge 2\),那么我们把这个对手新合并出的堆合并到自己的堆上

否则,我们另取一个\(1\)合并到当前堆,然后直接取对手合并出的堆为新的需要合并的堆

所以,到达最终方案的步数是确定的,算出步数然后判断即可

(有些地方有些细微的差异,就自行讨论一下吧QAQ)


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} int main() {
int T = read();
while(T --) {
int n = read(), m = read();
int t = n / m * (m - 1) + (n % m > 0) * (n % m - 1);
printf("%d\n", (t & 1) ? 0 : 1);
}
return 0;
}

luoguP4101 [HEOI2014]人人尽说江南好 结论的更多相关文章

  1. BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】

    BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...

  2. BZOJ 3609: [Heoi2014]人人尽说江南好

    3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 470  Solved: 336[Submit][Sta ...

  3. bzoj3609 [Heoi2014]人人尽说江南好 博弈

    [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 581  Solved: 420[Submit][Status][D ...

  4. [HEOI2014] 人人尽说江南好

    [HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...

  5. bzoj3609 [Heoi2014]人人尽说江南好

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏.    在过去,人们是要边玩 ...

  6. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  7. P4101 [HEOI2014]人人尽说江南好

    题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...

  8. [HEOI2014]人人尽说江南好 博弈论

    题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...

  9. BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】

    题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...

随机推荐

  1. TCP三次握手与四次挥手过程

    TCP连接的建立(三次握手) 首先,客户端与服务器均处于未连接状态,并且是客户端主动向服务器请求建立连接: 客户端将报文段中的SYN=1(同步位),并选择一个seq=x,(即该请求报文的序号为x)  ...

  2. jQuery入门——(二)

    0.基本知识 $与jQuery等价,$.fun代表jQuery的全局方法. jQuery必须首先导入JQuery库, jQuery的事件都不带on,例如 $("#btn").cli ...

  3. 脚本病毒分析扫描专题2-Powershell代码阅读扫盲

    4.2.PowerShell 为了保障木马样本的体积很小利于传播.攻击者会借助宏->WMI->Powershell的方式下载可执行文件恶意代码.最近也经常会遇见利用Powershell通过 ...

  4. C 之回调函数

    软件模块之间总是存在着一定的接口,从调用方式上,可以把他们分为三类:同步调用.回调和异步调用.同步调用是一种阻塞式调用,调用方要等待对方执行完毕才返回,它是一种单向调用:回调是一种双向调用模式,也就是 ...

  5. nginx_upstream_check_module-master对nginx的后端机器进行健康状态检查报403错误【转】

    在nginx.conf配置文件中 在server添加 location /nstatus { check_status; access_log off; #allow 192.168.2.11; #d ...

  6. 双机/RAC/Dataguard的区别【转】

    本文转自 双机/RAC/Dataguard的区别-jasoname-ITPUB博客 http://blog.itpub.net/22741583/viewspace-684261/ Data Guar ...

  7. java使用DOM操作XML

    XML DOM简介 XML DOM 是用于获取.更改.添加或删除 XML 元素的标准. XML 文档中的每个成分都是一个节点. DOM 是这样规定的: 整个文档是一个文档节点 每个 XML 标签是一个 ...

  8. HTML5 localStorage、sessionStorage 作用域

    一.localStorage localStorage有效期:永不失效,除非web应用主动删除. localStorage作用域:localStorage的作用域是限定在文档源级别的.文档源通过协议. ...

  9. java基础68 JavaScript城市联动框(网页知识)

    1.城市联动框 <!doctype html> <html> <head> <meta charset="utf-8"> <t ...

  10. Django基础 - 修改默认SQLite3数据库连接为MySQL

    Django数据库连接默认为SQLite3,打开setting.py可以看到数据库部分的配置如下: DATABASES = { 'default': { 'ENGINE': 'django.db.ba ...