题目大意:

给定\(n\)堆初始大小为\(1\)的石堆

每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\)

询问先手必赢?


不妨设我们是先手,且最后我们必胜

我们考虑构造局面\(m, m, m, m,m, ..., n\;mod\;m\)

我们从左往右依次合并出这些\(m\)堆

如果对手帮我们在当前堆上合并\(1\),那就是自寻死路

否则,如果另外的合并出了一个大小为\(2\)的堆

如果$m - $ 当前堆的大小 \(\ge 2\),那么我们把这个对手新合并出的堆合并到自己的堆上

否则,我们另取一个\(1\)合并到当前堆,然后直接取对手合并出的堆为新的需要合并的堆

所以,到达最终方案的步数是确定的,算出步数然后判断即可

(有些地方有些细微的差异,就自行讨论一下吧QAQ)


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} int main() {
int T = read();
while(T --) {
int n = read(), m = read();
int t = n / m * (m - 1) + (n % m > 0) * (n % m - 1);
printf("%d\n", (t & 1) ? 0 : 1);
}
return 0;
}

luoguP4101 [HEOI2014]人人尽说江南好 结论的更多相关文章

  1. BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】

    BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...

  2. BZOJ 3609: [Heoi2014]人人尽说江南好

    3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 470  Solved: 336[Submit][Sta ...

  3. bzoj3609 [Heoi2014]人人尽说江南好 博弈

    [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 581  Solved: 420[Submit][Status][D ...

  4. [HEOI2014] 人人尽说江南好

    [HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...

  5. bzoj3609 [Heoi2014]人人尽说江南好

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏.    在过去,人们是要边玩 ...

  6. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  7. P4101 [HEOI2014]人人尽说江南好

    题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...

  8. [HEOI2014]人人尽说江南好 博弈论

    题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...

  9. BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】

    题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...

随机推荐

  1. [转]google gflags 库完全使用

    简单介绍 gflags 是 google 开源的用于处理命令行参数的项目. 安装编译 项目主页:gflags ➜ ~ git clone https://github.com/gflags/gflag ...

  2. 富文本存储型XSS的模糊测试之道

    富文本存储型XSS的模糊测试之道 凭借黑吧安全网漏洞报告平台的公开案例数据,我们足以管中窥豹,跨站脚本漏洞(Cross-site Script)仍是不少企业在业务安全风险排查和修复过程中需要对抗的“大 ...

  3. 缓存数据库-redis安装和配置

    一:redis安装 python操作redis分为两部分,一为安装redis程序 二是安装支持python操作redis的模块 1)安装redis redis 官方网站:http://www.redi ...

  4. python网络编程-socket“粘包”(小数据发送问题)

    一:什么是粘包 “粘包”, 即服务器端你调用时send 2次,但你send调用时,数据其实并没有立刻被发送给客户端,而是放到了系统的socket发送缓冲区里,等缓冲区满了.或者数据等待超时了,数据才会 ...

  5. Python基础 - 系统进程调用

    subprocess模块 近期发现还有一个更好的用于取代subprocess的库,sh,也是openstack当中使用的库.

  6. [android]解析XML文件的方法有三种:PULL,DOM,SAM

    PULL 的工作原理: XML pull提供了开始元素和结束元素.当某个元素开始时,可以调用parser.nextText从XML文档中提取所有字符数据.当解析到一个文档结束时,自动生成EndDocu ...

  7. AdvStringGrid 标题头

    标题头内容: 字体: 标题头高度: 头的对齐方式:

  8. 2018JAVA复习摘要

    由于公司内部原因,2018年感觉自己可能会换个新环境:虽然时间尚未确定,但还是得提前做好防范,毕竟面试复习是需要时间好好准备才能拿到自己理想的offer.打算从清明节之后开始好复习基本知识要点,先整理 ...

  9. T-sql语句修改数据库逻辑名、数据库名、物理名(sql2000)

    --更改MSSQL数据库物理文件名Sql语句的写法 --注意:要在活动监视器里面确保没有进程连接你要改名的数据库!!!!!!!!!!!!!!!!!!!! -- Sql语句如下 USE master - ...

  10. IntelliJ IDEA 2018.2.2及以下版本破解方法

    破解文件下载地址:https://pan.baidu.com/s/1FKeGekyIHFUWaWi6tk2eEw =========================================== ...