[2018HN省队集训D5T2] party

题意

给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值.

有 \(q\) 个查询, 每次给定一个大小为 \(c\) 的点集, 点集中的每个点都可以选择若干从自身到所有点的LCA的路径上的点的权值. 要求所有点选取的权值之间都不能重复且每个点选择的权值种类数相等. 求最大的总种类数量.

\(n\le 3\times 10^5,m\le 1000, q\le 5\times 10^4,c\le5\).

题解

注意到 \(m\) 的范围比较小, 我们一点都不显然可以用 std::bitset 来维护某条路径上存在的权值集合.

然后我们如果要暴力判定的话, 可以二分答案/多次增广+Dinic来跑. 从这个过程中可以看出我们实际上要求的是满足一边有 \(c\times k\) 个点另一边有 \(m\) 个点的二分图存在完美匹配的最大的 \(k\).

涉及到完美匹配的判定, 我们有一个玄学定理叫霍尔定理. 大体内容是:

一个二分图 \(G\) 存在完美匹配, 当且仅当 \(X\) 中的任意 \(k\) 个点都至少与 \(Y\) 中的 \(k\) 个点邻接.

不难发现左部的 \(c\times k\) 个点中只有 \(c\) 种邻接关系不同的点, 所以我们 \(2^c\)枚举左部点的子集, 用 std::bitset 取并来计算邻接点个数, 则 \(k\) 的最大值即为邻接点个数与左部点子集大小的比值的最小值.

于是就这么跑就可以了. 代码极为好写.

不过查询路径的时候如果用普通树剖+线段树的话是 \(\log^2\) 的, 注意到我们只会求某个点的祖先到某个点的路径, 也就是说除了最浅的一条链之外其他的链都只取了一个前缀. 于是记录每个点到链顶的前缀和, 最后一次查询用线段树就可以把复杂度降到一个 \(\log\) 了. 然而犯懒没写...不加这个优化跑得也挺快的qwq

参考代码

#include <bits/stdc++.h>

const int MAXV=3e5+10;
const int MAXE=1e6+10;
typedef std::bitset<1024> bits; struct Edge{
int from;
int to;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* topE=E; struct Node{
int l;
int r;
bits val;
Node* lch;
Node* rch;
Node(int,int);
bits Query(int,int);
};
Node* N; int n;
int m;
int q;
int clk;
int t[10];
bits b[10];
int a[MAXV];
int dfn[MAXV];
int pos[MAXV];
int prt[MAXV];
int son[MAXV];
int top[MAXV];
int size[MAXV];
int deep[MAXV]; int LCA(int,int);
void DFS(int,int);
bits Query(int,int);
void Insert(int,int);
void DFS(int,int,int); int main(){
scanf("%d%d%d",&n,&m,&q);
for(int i=2;i<=n;i++){
int x;
scanf("%d",&x);
Insert(x,i);
}
for(int i=1;i<=n;i++)
scanf("%d",a+i);
DFS(1,0,0);
DFS(1,1);
N=new Node(1,n);
while(q--){
int c=0;
scanf("%d",&c);
scanf("%d",t);
int lca=t[0];
for(int i=1;i<c;i++){
scanf("%d",t+i);
lca=LCA(lca,t[i]);
}
for(int i=0;i<c;i++)
b[i]=Query(lca,t[i]);
int ans=INT_MAX;
for(int s=1;s<(1<<c);s++){
bits cur;
int cnt=0;
for(int i=0;i<c;i++){
if((1<<i)&s){
++cnt;
cur|=b[i];
}
}
ans=std::min<int>(ans,cur.count()/cnt);
}
printf("%d\n",ans*c);
}
return 0;
} int LCA(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])
std::swap(x,y);
x=prt[top[x]];
}
if(deep[x]>deep[y])
std::swap(x,y);
return x;
} bits Query(int x,int y){
bits ans;
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])
std::swap(x,y);
ans|=N->Query(dfn[top[x]],dfn[x]);
x=prt[top[x]];
}
if(deep[x]>deep[y])
std::swap(x,y);
ans|=N->Query(dfn[x],dfn[y]);
return ans;
} Node::Node(int l,int r):l(l),r(r){
if(l==r)
this->val.set(a[pos[l]]);
else{
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->val=this->lch->val|this->rch->val;
}
} bits Node::Query(int l,int r){
if(l<=this->l&&this->r<=r)
return this->val;
else{
if(r<=this->lch->r)
return this->lch->Query(l,r);
if(this->rch->l<=l)
return this->rch->Query(l,r);
return this->lch->Query(l,r)|this->rch->Query(l,r);
}
} void DFS(int root,int prt,int deep){
::prt[root]=prt;
::deep[root]=deep;
::size[root]=1;
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->to!=prt){
DFS(i->to,root,deep+1);
size[root]+=size[i->to];
if(size[i->to]>size[son[root]])
son[root]=i->to;
}
}
} void DFS(int root,int top){
++clk;
::dfn[root]=clk;
::pos[clk]=root;
::top[root]=top;
if(son[root])
DFS(son[root],top);
for(Edge* i=head[root];i!=NULL;i=i->next)
if(i->to!=prt[root]&&i->to!=son[root])
DFS(i->to,i->to);
} inline void Insert(int from,int to){
topE->from=from;
topE->to=to;
topE->next=head[from];
head[from]=topE++;
}

[2018HN省队集训D5T2] party的更多相关文章

  1. [2018HN省队集训D9T1] circle

    [2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...

  2. [2018HN省队集训D8T1] 杀毒软件

    [2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...

  3. [2018HN省队集训D8T3] 水果拼盘

    [2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...

  4. [2018HN省队集训D6T2] girls

    [2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...

  5. [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform

    [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...

  6. [2018HN省队集训D5T1] 沼泽地marshland

    [2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...

  7. [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard

    [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...

  8. [2018HN省队集训D1T3] Or

    [2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...

  9. [2018HN省队集训D1T1] Tree

    [2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...

随机推荐

  1. Python解析xml与JSON

    xml与json是常用的文件交换格式,常用来表示网页的html则是xml的变种.解析xml和json在web开发中有着重要应用. DOM解析XML 文件对象模型(Document Object Mod ...

  2. 19.Decorator修饰器

    Decorator 修饰器 类的修饰 许多面向对象的语言都有修饰器(Decorator)函数,用来修改类的行为.目前,有一个提案将这项功能,引入了 ECMAScript. @testable clas ...

  3. Angular的第一个helloworld

    在安装了node,npm,angular-cli,vscode之后,我们来创建一个angular的应用 创建第一个hello world 使用的IDE工具为vscode 打开vscode,打开一个命令 ...

  4. CSS 通过使用Important覆盖所有其他样式

    在许多情况下,您将使用CSS库.这些可能会意外覆盖您自己的CSS.所以当你绝对需要确定一个元素具有特定的CSS时,可以使用 !important. 让我们回到之前的 pink-text class 声 ...

  5. [日常] MySQL的预处理技术测试

    MySQL预处理技术:1.减轻服务器压力2.防止sql注入,把传递过去的危险字符也只当做参数处理3.将sql语句强制一分为二:第一部分为前面相同的命令和结构部分,第二部分为后面可变的数据部分基本使用 ...

  6. Java Swing实战(一)JFrame和JTabbedPane容器

    概述: 项目是一个桌面程序,涉及标签和按钮组件.布局管理器组件.面板组件.列表框和下拉框组件等组件,以及Swing事件处理机制. 下面先从最基础的界面开始. /** * @author: lishua ...

  7. 求N的因子之和。

    理论依据: 代码: /* 显然,数据够大的时候,数组要用 __int64 */ #include<iostream> #include<map> #include<cst ...

  8. K:跳表

      跳表(SkipList)是一种随机化的数据结构,目前在redis和leveldb中都有用到它,它的效率和红黑树以及 AVL 树不相上下,但跳表的原理相当简单,只要你能熟练操作链表, 就能轻松实现一 ...

  9. 小tip:CSS3下的渐变文字效果实现——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=1601 一.方法一:借 ...

  10. Oracle用户权限及死锁

    Oracle用户权限表 oracle数据库中涉及到用户权限的三个表,dba_users,all_users,user_users有什么区别 dba_开头的是查全库所有的,all_开头的是查当前用户可以 ...