[2018HN省队集训D5T2] party
[2018HN省队集训D5T2] party
题意
给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值.
有 \(q\) 个查询, 每次给定一个大小为 \(c\) 的点集, 点集中的每个点都可以选择若干从自身到所有点的LCA的路径上的点的权值. 要求所有点选取的权值之间都不能重复且每个点选择的权值种类数相等. 求最大的总种类数量.
\(n\le 3\times 10^5,m\le 1000, q\le 5\times 10^4,c\le5\).
题解
注意到 \(m\) 的范围比较小, 我们一点都不显然可以用 std::bitset
来维护某条路径上存在的权值集合.
然后我们如果要暴力判定的话, 可以二分答案/多次增广+Dinic来跑. 从这个过程中可以看出我们实际上要求的是满足一边有 \(c\times k\) 个点另一边有 \(m\) 个点的二分图存在完美匹配的最大的 \(k\).
涉及到完美匹配的判定, 我们有一个玄学定理叫霍尔定理. 大体内容是:
一个二分图 \(G\) 存在完美匹配, 当且仅当 \(X\) 中的任意 \(k\) 个点都至少与 \(Y\) 中的 \(k\) 个点邻接.
不难发现左部的 \(c\times k\) 个点中只有 \(c\) 种邻接关系不同的点, 所以我们 \(2^c\)枚举左部点的子集, 用 std::bitset
取并来计算邻接点个数, 则 \(k\) 的最大值即为邻接点个数与左部点子集大小的比值的最小值.
于是就这么跑就可以了. 代码极为好写.
不过查询路径的时候如果用普通树剖+线段树的话是 \(\log^2\) 的, 注意到我们只会求某个点的祖先到某个点的路径, 也就是说除了最浅的一条链之外其他的链都只取了一个前缀. 于是记录每个点到链顶的前缀和, 最后一次查询用线段树就可以把复杂度降到一个 \(\log\) 了. 然而犯懒没写...不加这个优化跑得也挺快的qwq
参考代码
#include <bits/stdc++.h>
const int MAXV=3e5+10;
const int MAXE=1e6+10;
typedef std::bitset<1024> bits;
struct Edge{
int from;
int to;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* topE=E;
struct Node{
int l;
int r;
bits val;
Node* lch;
Node* rch;
Node(int,int);
bits Query(int,int);
};
Node* N;
int n;
int m;
int q;
int clk;
int t[10];
bits b[10];
int a[MAXV];
int dfn[MAXV];
int pos[MAXV];
int prt[MAXV];
int son[MAXV];
int top[MAXV];
int size[MAXV];
int deep[MAXV];
int LCA(int,int);
void DFS(int,int);
bits Query(int,int);
void Insert(int,int);
void DFS(int,int,int);
int main(){
scanf("%d%d%d",&n,&m,&q);
for(int i=2;i<=n;i++){
int x;
scanf("%d",&x);
Insert(x,i);
}
for(int i=1;i<=n;i++)
scanf("%d",a+i);
DFS(1,0,0);
DFS(1,1);
N=new Node(1,n);
while(q--){
int c=0;
scanf("%d",&c);
scanf("%d",t);
int lca=t[0];
for(int i=1;i<c;i++){
scanf("%d",t+i);
lca=LCA(lca,t[i]);
}
for(int i=0;i<c;i++)
b[i]=Query(lca,t[i]);
int ans=INT_MAX;
for(int s=1;s<(1<<c);s++){
bits cur;
int cnt=0;
for(int i=0;i<c;i++){
if((1<<i)&s){
++cnt;
cur|=b[i];
}
}
ans=std::min<int>(ans,cur.count()/cnt);
}
printf("%d\n",ans*c);
}
return 0;
}
int LCA(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])
std::swap(x,y);
x=prt[top[x]];
}
if(deep[x]>deep[y])
std::swap(x,y);
return x;
}
bits Query(int x,int y){
bits ans;
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])
std::swap(x,y);
ans|=N->Query(dfn[top[x]],dfn[x]);
x=prt[top[x]];
}
if(deep[x]>deep[y])
std::swap(x,y);
ans|=N->Query(dfn[x],dfn[y]);
return ans;
}
Node::Node(int l,int r):l(l),r(r){
if(l==r)
this->val.set(a[pos[l]]);
else{
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->val=this->lch->val|this->rch->val;
}
}
bits Node::Query(int l,int r){
if(l<=this->l&&this->r<=r)
return this->val;
else{
if(r<=this->lch->r)
return this->lch->Query(l,r);
if(this->rch->l<=l)
return this->rch->Query(l,r);
return this->lch->Query(l,r)|this->rch->Query(l,r);
}
}
void DFS(int root,int prt,int deep){
::prt[root]=prt;
::deep[root]=deep;
::size[root]=1;
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->to!=prt){
DFS(i->to,root,deep+1);
size[root]+=size[i->to];
if(size[i->to]>size[son[root]])
son[root]=i->to;
}
}
}
void DFS(int root,int top){
++clk;
::dfn[root]=clk;
::pos[clk]=root;
::top[root]=top;
if(son[root])
DFS(son[root],top);
for(Edge* i=head[root];i!=NULL;i=i->next)
if(i->to!=prt[root]&&i->to!=son[root])
DFS(i->to,i->to);
}
inline void Insert(int from,int to){
topE->from=from;
topE->to=to;
topE->next=head[from];
head[from]=topE++;
}
[2018HN省队集训D5T2] party的更多相关文章
- [2018HN省队集训D9T1] circle
[2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...
- [2018HN省队集训D8T1] 杀毒软件
[2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...
- [2018HN省队集训D8T3] 水果拼盘
[2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...
- [2018HN省队集训D6T2] girls
[2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...
- [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform
[Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...
- [2018HN省队集训D5T1] 沼泽地marshland
[2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...
- [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard
[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...
- [2018HN省队集训D1T3] Or
[2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...
- [2018HN省队集训D1T1] Tree
[2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...
随机推荐
- CentOS探索之路2---使用rpm安装JDK
使用rpm安装jdk 在前一Linux探索文章中http://www.cnblogs.com/Kidezyq/p/8782728.html,有关于通过yum指令安装原生OpenJDK的命令.当时有 ...
- Node.js之Express四
Express提供的大部分功能是通过中间件函数完成的,这些中间件函数在Node.js收到请求的时点和发送响应的时点之间执行.Express的Connect模块提供了中间件框架,可以方便的在全局或路径级 ...
- [转]使用BCP导出导入数据
本文转自:http://www.cnblogs.com/zerocc/p/3225723.html bcp 实用工具可以在 Microsoft SQL Server 实例和用户指定格式的数据文件间大容 ...
- Message小结(一)
一.消息版本 为了区别消息的结构和寻址机制,W3C定制了SOAP1.1和SOAP1.2定义消息的结构,WS-Addressing 2004和WS-Addressing 1.0定义消息的寻址机制. ...
- 关于jquery的入门,简单的封装。
看过不同的博客,觉得以下的博客写的比较简洁明了,通俗易懂. 关于jquery博客:http://www.cnblogs.com/moqiutao/p/6523924.html 关于js:http:// ...
- 解决Coursera平台上Andrew.Ng的机器学习课程无法正常提交编程作业的问题
课程链接:https://www.coursera.org/learn/machine-learning/home/welcome 我使用的环境是MATLAB R2016a,Win10系统. 执行su ...
- Linux学习4-远程登录管理工具安装
1.配置虚拟机网络环境 桥接模式:使用真实网卡进行通信,配置简单,可以和通往内的其他真实机直接进行通讯,缺点是它会占用网段的一个IP地址. NAT模式:使用虚拟机模拟的虚拟网卡进行通讯,会使用VMne ...
- Bash:常用命令工具-uniq
NAME uniq - report or omit repeated lines SYNOPSIS uniq [OPTION]... [INPUT [OUTPUT]] DESCRIPTION Fil ...
- tr,td高度不生效
功能:表格内容较长,但是页面高度有限,超出显示滚动条 阻碍:给tr或者td加高度都不生效,不显示滚动条 解决方案:td中加div,设置高度和内容溢出时的样式 <table border='1' ...
- 第二十天- 多继承 经典MRO 新式MRO super()
# 多继承:# 在继承关系中.⼦类自动拥有⽗类中除私有属性外其他所有内容.python⽀持多继承.子类可拥有多⽗类. class ShenXian: # 神仙 def fei(self): print ...