传送门啦

再一次见证了分块的神奇用法,在数论里用分块思想。

我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ 分,当然,不甘平凡的我们怎么能为 $ 60 $ 分折腰,我们来看正解打法。

我们要知道 $ a % b = a-b*\lfloor\frac{a}{b}\rfloor$ 。.

我们代入后得到:

$ ans = \sum\limits^{n}{i=1}(k-i\lfloor\frac{k}{i}\rfloor) = n*k-\sum\limits^{n}{i=1}(i * \lfloor\frac{k}{i}\rfloor) $

然后我们用分块做,我们最后计算 $ n * k $ 减去每一段的和就好了。

开始枚举左端点,根据 $ k $ 计算出右端点:

若 $ \lfloor\frac{k}{l}\rfloor \neq 0 $ , $ r = min(\lfloor\frac{k}{\lfloor\frac{k}{l}\rfloor}\rfloor , n) $ 。

若$ \lfloor\frac{k}{l}\rfloor=0 $ ,$ r=n $。

最后计算每一块的和:

$ sum = \lfloor\frac{k}{l}\rfloor * (r-l+1) *(l+r) / 2$。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; inline long long read(){
char ch = getchar();
long long f = 1 , x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} long long n,k;
long long ans; int main(){
n = read(); k = read();
ans = n * k;
for(int l=1,r;l<=n;l=r+1){
if(k / l != 0) r = min(k / (k / l) , n);
else r = n;
ans -= (k / l) * (r - l + 1) * (l + r) / 2;
}
printf("%lld\n",ans);
return 0;
}

洛谷P2261余数求和的更多相关文章

  1. 洛谷 - P2261 - 余数求和

    https://www.luogu.org/problemnew/show/P2261 看了一下题解,取模运算可以换成减法来做. $a\%b=a-b*\lfloor\frac{a}{b}\rfloor ...

  2. 洛谷P2261 余数求和

    整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...

  3. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  4. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  5. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  6. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  7. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. 【洛谷P2261】余数求和

    题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...

随机推荐

  1. Andoid自动判断输入是电话,网址或者Email的方法--Linkify

    Andoid自动判断输入是电话,网址或者Email的方法----Linkify的应用!http://blog.csdn.net/android_tutor/article/details/500016 ...

  2. 解题:洛谷2633 Count on a tree

    题面 在树上建主席树...... 每个点从父亲那里建过来,最后建出来就是从根到$i$这条链上的主席树,查询的时候一边差分一边查询 ($cmt[u]+cmt[v]-cmt[lca(u,v)]-cmt[a ...

  3. WHY C++ ?(by Herb Sutter) & C++17 standard

    WHY C++ ? C++

  4. HDU 6230

    Palindrome Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tota ...

  5. python中的文本操作

    python如何进行文本操作 1.能调用方法的一定是对象,比如数值.字符串.列表.元组.字典,甚至文件也是对象,Python中一切皆为对象. str1 = 'hello' str2 = 'world' ...

  6. 科学计算三维可视化---TraitsUI(View定义界面)

    View定义界面 使用View来自定义界面 class ModelManager(HasTraits): model_name = Str category = Str model_file = St ...

  7. 【转】Ubuntu+apache绑定多个域名

    1. 将 http://www.a.com 与 http://www.b.com 的DNS解析到你的服务器IP上. 2. 删除apache的默认主机配置文件.你也不希望创建2个虚拟主机后人家还能直接访 ...

  8. android studio run 的时候,报the apk file does not exist on disk,

    1.首先 clean rebuild,重启,不能解决的话,再找到这个 然后是这里: 不用填,点ok,ok即可,他喵的,卡我俩小时

  9. 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

    6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation yo ...

  10. python学习笔记2-字符串操作

    一.字符串切片 #切片也能适合字符串 tittle='今 天 发 苹 果' for i t in enumerate(tittle): #enumerate可以同时循环下标和值 print('%s:% ...