传送门啦

再一次见证了分块的神奇用法,在数论里用分块思想。

我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ 分,当然,不甘平凡的我们怎么能为 $ 60 $ 分折腰,我们来看正解打法。

我们要知道 $ a % b = a-b*\lfloor\frac{a}{b}\rfloor$ 。.

我们代入后得到:

$ ans = \sum\limits^{n}{i=1}(k-i\lfloor\frac{k}{i}\rfloor) = n*k-\sum\limits^{n}{i=1}(i * \lfloor\frac{k}{i}\rfloor) $

然后我们用分块做,我们最后计算 $ n * k $ 减去每一段的和就好了。

开始枚举左端点,根据 $ k $ 计算出右端点:

若 $ \lfloor\frac{k}{l}\rfloor \neq 0 $ , $ r = min(\lfloor\frac{k}{\lfloor\frac{k}{l}\rfloor}\rfloor , n) $ 。

若$ \lfloor\frac{k}{l}\rfloor=0 $ ,$ r=n $。

最后计算每一块的和:

$ sum = \lfloor\frac{k}{l}\rfloor * (r-l+1) *(l+r) / 2$。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; inline long long read(){
char ch = getchar();
long long f = 1 , x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1;ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} long long n,k;
long long ans; int main(){
n = read(); k = read();
ans = n * k;
for(int l=1,r;l<=n;l=r+1){
if(k / l != 0) r = min(k / (k / l) , n);
else r = n;
ans -= (k / l) * (r - l + 1) * (l + r) / 2;
}
printf("%lld\n",ans);
return 0;
}

洛谷P2261余数求和的更多相关文章

  1. 洛谷 - P2261 - 余数求和

    https://www.luogu.org/problemnew/show/P2261 看了一下题解,取模运算可以换成减法来做. $a\%b=a-b*\lfloor\frac{a}{b}\rfloor ...

  2. 洛谷P2261 余数求和

    整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...

  3. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  4. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  5. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  6. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  7. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. 【洛谷P2261】余数求和

    题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...

随机推荐

  1. eclipse 安装 activiti-designer-5.18.0,亲测成功

    转: eclipse 安装 activiti-designer-5.18.0,亲测成功 2018年06月02日 15:50:05 ldw4033 阅读数:2826   版权声明:本文为博主原创文章,未 ...

  2. 【题解】打地鼠 SDOI2011 模拟 行列无关

    Prelude 为什么洛谷上的题解都是剪枝做的啊!就没有人写复杂度靠谱的算法吗! 传送到洛谷:( ̄. ̄) 传送到BZOJ:( ´・・)ノ(._.`) 本篇博客地址:o(><:)oo Sol ...

  3. .gitignore 无效问题

    利用.gitignore过滤文件,如编译过程中的中间文件,等等,这些文件不需要被追踪管理. 现象: 在.gitignore添加file1文件,以过滤该文件,但是通过Git status查看仍显示fil ...

  4. NATS_05:NATS服务器部署

    1.NATS安装前的普及 NATS 的服务器是使用 GoLang 语言开发的,其可执行文件的名字为:gnatsd,表示:Go NATS Daemon.NATS服务器是一个开源软件,基于 MIT 许可证 ...

  5. python---基础知识回顾(十一)图像处理模块PIL

    前戏: 虽然PIL没有入OpenCV那样强大的功能,但是所提供的功能,在一般的图像处理中足够使用. 图像类别: 计算机绘图中有两类图像:一类是矢量图,另一类是点阵图(位图) 矢量图:基于计算机数字对象 ...

  6. 1130 N的阶乘的长度 V2(斯特林近似)

    1130 N的阶乘的长度 V2(斯特林近似) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720, ...

  7. 6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

    6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation yo ...

  8. maven本地库更新失败

    当我们在项目中遇到有些依赖在第三方仓库特别是maven仓库里面没有的时候我们会怎么办? 答案1.通过私服,上传到公司的一个私服上然后进行下载 答案2.通过本地安装,这样非常方面进行使用,今天我们就采用 ...

  9. java.lang.System.arraycopy() 与java.util.Arrays.copyOf()的区别

    java.lang.System.arraycopy() 与java.util.Arrays.copyOf()的区别 一.java.lang.System.arraycopy() 该方法的声明: /* ...

  10. anonymous namespace V.S. static variant

    [anonymous namespace V.S. static variant] 在C语言中,如果我们在多个tu(translation unit)中使用了同一个名字做为函数名或者全局变量名,则在链 ...