洛谷 P4478 [BJWC2018]上学路线
洛谷 P4478 [BJWC2018]上学路线
神仙题orz,竟然没有1A。。。。容斥+卢卡斯+crt??
首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因为\(f[i][0]+f[i][1]=1\)所以只要记一个\(f[i]\)是经过奇数个点的方案数就行
枚举一个左下的点走到这个点,或者直接从1走到这个点,
\(f[i]=\sum_{\text{j in lower left side}}((1-f[j])\times C_{x_i+y_i-x_j-y_j}^{x_i-x_j})+C_{x_i+y_i}^{x_i}\)
答案就是从所有点走到这个点,加上从1号点走到这个点\(\sum_{i}((1-f[i])\times C_{n+m-x_i-x_j}^{n-x_i})+C_{n+m}^{n}\)
sort一遍dp就做完了,只剩下求组合数了
模数好像不是质数,分解一下发现是3×5×6793×10007
crt即可,对每个模数求一遍方案,求组合数用lucas
lucas大概就是\(C_{n}^{m}\text{mod }p=C_{\lfloor\frac{n}{p}\rfloor}^{{\lfloor\frac{m}{p}\rfloor}}\times C_{n\text{ mod }p}^{m\text{ mod }p}\mod p\)
这神仙题就做完了。。。
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il ll gi(){
ll x=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x;
}
ll mod;
struct yyb{ll x,y;}a[210];
il bool cmp(const yyb&a,const yyb&b){
if(a.x^b.x)return a.x<b.x;
return a.y<b.y;
}
ll f[210];
ll p[5],tot;
ll Ans[5];
ll pp[5],tt[5];
ll fact[1000010],inv[1000010];
il ll C(ll n,ll m,ll P){
if(n<m)return 0;
return fact[n]*inv[fact[m]*fact[n-m]%P]%P;
}
il ll Lucas(ll n,ll m,ll P){
if(n<m)return 0;if(!n)return 1;
return Lucas(n/P,m/P,P)*C(n%P,m%P,P)%P;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("4478.in","r",stdin);
freopen("4478.out","w",stdout);
#endif
ll n=gi(),m=gi(),t=gi();mod=gi();
if(mod==1000003)p[tot=1]=mod;
else p[++tot]=3,p[++tot]=5,p[++tot]=6793,p[++tot]=10007;
for(int i=1;i<=t;++i)a[i].x=gi(),a[i].y=gi();
std::sort(a+1,a+t+1,cmp);
ll M=1;
for(int i=1;i<=tot;++i)M*=p[i];
for(int i=1;i<=tot;++i)pp[i]=M/p[i];
for(int o=1;o<=tot;++o){
ll P=p[o];
inv[1]=1;for(int i=2;i<P;++i)inv[i]=(P-(P/i)*inv[P%i]%P)%P;
tt[o]=inv[pp[o]%P];
fact[0]=1;for(int i=1;i<P;++i)fact[i]=fact[i-1]*i%P;
Ans[o]=Lucas(n+m,n,P);
for(int i=1;i<=t;++i){
f[i]=Lucas(a[i].x+a[i].y,a[i].x,P);
for(int j=1;j<i;++j)
if(a[j].x<=a[i].x&&a[j].y<=a[i].y)
f[i]+=P-f[j]*Lucas(a[i].x+a[i].y-a[j].x-a[j].y,a[i].x-a[j].x,P)%P;
f[i]%=P;
Ans[o]+=P-Lucas(n+m-a[i].x-a[i].y,n-a[i].x,P)*f[i]%P;
}
Ans[o]%=P;
}
ll ans=0;
for(int i=1;i<=tot;++i)ans+=Ans[i]*pp[i]%mod*tt[i]%mod;
printf("%lld\n",ans%mod);
return 0;
}
洛谷 P4478 [BJWC2018]上学路线的更多相关文章
- P4478 [BJWC2018]上学路线
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...
- Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT
首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- Java实现 洛谷 Car的旅行路线
输入输出样例 输入样例#1: 1 3 10 1 3 1 1 1 3 3 1 30 2 5 7 4 5 2 1 8 6 8 8 11 6 3 输出样例#1: 47.5 import java.util. ...
- BJWC2018上学路线
题目描述 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B 喜欢走最短的 ...
- [luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)
传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路 ...
- [BJWC2018]上学路线
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...
- 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)
洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...
- 洛谷 P2233 [HNOI2002]公交车路线 解题报告
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
随机推荐
- Windows删除指定时间之前指定后缀名的文件
时间判定标准:文件创建时间 实例:删除 D:\backup 目录下(包括子文件夹),7天前 “.bak”后缀名的文件及30天前后缀名为 “*.log” 的文件 批处理: @echo off echo ...
- Office 365实现单点登录系列(3)—使用Azure AD Connect 进行目录同步
Hello 小伙伴们,我回来了~ 2017年底中招了流感,还得了结膜炎,我也是无奈的···但使命感驱使我还是要把文章更完(这么敬业还不点赞关注(*^__^*) ) 我们接着上一篇文章继续说,上一篇已经 ...
- 铁乐学python_day03-作业
1.有变量name = "aleX leNb" 完成如下操作: 移除name变量对应的值两边的空格,并输出处理结果 n1 = name.strip() print(n1) 结果:a ...
- VC2010 配置OpenGL环境(转)
转自http://www.cnblogs.com/longdouhzt/archive/2012/02/13/2350094.html OpenGL开发环境简介 基于OpenGL标准开发的应用程序运行 ...
- 关于安装AndroidStudio中遇见的问题
安装AndroidStudio: 最近,准备了解下Android,就买了本<第一行代码Android:第二版>, 最开始就是安装AndroidStudio,刚开始以为安装的挺容易的,结果… ...
- Python的multiprocessing,Queue,Process
在多线程multiprocessing模块中,有两个类,Queue(队列)和Process(进程): 在Queue.py中也有一个Queue类,这两个Queue的区别? from multiproce ...
- 浅析JS中的堆内存与栈内存
最近跟着组里的大佬面试碰到这么一个问题, Q:说说var.let.const的区别 A:balabalabalabla... Q:const定义的值能改么? A:你逗我?不能吧 不知道各位看官怎么想? ...
- grep命令.md
grep命令 简介 Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来.grep全称是Global Regular Expression Prin ...
- Linux环境变量配置文件/etc/profile、/etc/bashrc、~/.bashrc的区别以及一些隐藏文件的作用
①/etc/profile: 该文件登录操作系统时,为每个用户设置环境信息,当用户第一次登录时,该文件被执行.也就是说这个文件对每个shell都有效,用于获取系统的环境信息. ②/etc/bashrc ...
- Hive学习之路 (二十)Hive 执行过程实例分析
一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Opera ...