题意

给出一个长度为\(n\)的数列和数字\(X\),对于数列的每一种排列,其权值\(X\)依次对排列中的数取模,求出\(n!\)种情况最后剩下的数的权值和

分析

如果大的数字排在小的数字后面,那么大的数字对答案无影响。

可以将数列从大到小排序,然后考虑\(dp\)每个数字经过\(n\)次操作后的方案数

设\(dp[i][j]\)为\(i\)次操作后数字为\(j\)的方案数

两种转移方程

  • 选择:\(dp[i][j\mod a[i]]=dp[i][j\mod a[i]]+dp[i-1][j]\)

  • 不选:\(dp[i][j]=dp[i][j]+dp[i-1][j]*(n-i)\),不选时要将这个数放在比它小的数后面,即后面的\((n-i)\)个位置

Code

```c++
#include<bits/stdc++.h>
#define fi first
#define se second
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
const double eps=1e-6;
const ll inf=1e18;
const int mod=1e9+7;
const int maxn=1e5+10;
int n,x;
int a[maxn];
ll dp[210][maxn];
int cmp(int a,int b){
return a>b;
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>x;
for(int i=1;i<=n;i++){
cin>>a[i];
}
sort(a+1,a+n+1,cmp);
dp[0][x]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<=x;j++){
(dp[i][j%a[i]]+=dp[i-1][j])%mod;
(dp[i][j]+=dp[i-1][j]*(n-i)%mod)%mod;
}
}
ll ans=0;
for(int j=0;j<=x;j++){
ans=(ans+dp[n][j]*j%mod)%mod;
}
cout<<ans<<endl;
return 0;
}

AtCoder ExaWizards 2019 D Modulo Operations的更多相关文章

  1. AtCoder ExaWizards 2019 简要题解

    AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...

  2. 【AtCoder】ExaWizards 2019

    ExaWizards 2019 C - Snuke the Wizard 发现符文的相对位置不变,直接二分某个位置是否到达最左或最右来计算 #include <bits/stdc++.h> ...

  3. AtCoder diverta 2019 Programming Contest 2

    AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...

  4. ExaWizards 2019 English D - Modulo Operations(DP)

    Time Limit: 2 sec / Memory Limit: 1024 MB Score : 600600 points Problem Statement Snuke has a blackb ...

  5. AtCoder Beginner Contest 253 F - Operations on a Matrix // 树状数组

    题目传送门:F - Operations on a Matrix (atcoder.jp) 题意: 给一个N*M大小的零矩阵,以及Q次操作.操作1(l,r,x):对于 [l,r] 区间内的每列都加上x ...

  6. AtCoder WTF 2019 C2. Triangular Lamps Hard

    题目链接 感觉这样的题真的称得上是鬼斧神工啊,\(\text{OI}\)中能多一些这样的题目就太好了. 题意: 有一个二维的三角坐标系,大概如图所示(图是从atcoder里偷下来的): 坐标系上的每个 ...

  7. ExaWizards 2019

    AB:div 3 AB??? C:div 1 C???场内自闭的直接去看D.事实上是个傻逼题,注意到物品相对顺序不变,二分边界即可. #include<iostream> #include ...

  8. AtCoder M-SOLUTIONS 2019 Task E. Product of Arithmetic Progression

    problem link Official editorial: code: int main() { #if defined LOCAL && !defined DUIPAI ifs ...

  9. Solution -「ExaWizards 2019 C」Snuke and Wizards

    \(\mathcal{Description}\)   Link.   给定一个长度为 \(n\) 的字符串 \(s\),每个字符上初始有一张卡片.\(q\) 次操作,每次指定 \(s\) 中字符为 ...

随机推荐

  1. swift版的CircleView

    swift版的CircleView 效果图 源码 // // CircleView.swift // CircleView // // Created by YouXianMing on 15/10/ ...

  2. 解决 锁定文件失败 打不开磁盘“D:\ubuntu\Ubuntu 64 位.vmdk”或它所依赖的某个快照磁盘。 模块 Disk”启动失败

    一次在使用虚拟机的过程中,电脑出问题强制关机后,重新打开虚拟机,出现了“文件锁定失败”,打不开虚拟机的情况. 上网百度查相关的解决方案,终于解决了问题.因为虚拟机运行的时候会创建相应的文件,即在虚拟机 ...

  3. ZT 内地20年经典电视剧大全

    内地20年经典电视剧大全     片尾曲:<故事就是故事> 演唱:戴娆 我听爷爷讲了一个故事 故事里的事是那昨天的事 故事里有好人也有坏人 故事里有好事也有坏事 故事里有多少是是非非 故事 ...

  4. tkinter入门,canvas实现百度,抖音,加载

    对于tkinter的各个控件,可以参看  : https://blog.csdn.net/weixin_38532159/article/details/78379523 这个已经比较全面了 今天利用 ...

  5. JavaScript基础进阶之常用字符串方法总结

    前面三篇文章简单的把JavaScript基础内容过了一遍,我们已经可以用JavaScript写一些简单的代码了. 今天主要总结一下JavaScript中String对象中自带的一些方法,来帮助我们处理 ...

  6. window7远程桌面到server不能复制粘贴解决的方法

    用远程桌面登陆server不能在本机和远程server之间粘贴文本了,即不能从本机复制文本粘贴到server,也不能从server复制文本粘贴到本机. 下面是解决方法之中的一个,试了几次都非常管用户: ...

  7. 1433. [ZJOI2009]假期的宿舍【二分图】

    Description 学校放假了······有些同学回家了,而有些同学则有以前的好朋友来探访,那么住宿就是一个问题.比如A 和B都是学校的学生,A要回家,而C来看B,C与A不认识.我们假设每个人只能 ...

  8. Spring Boot中使用Redis小结

    Spring Boot中除了对常用的关系型数据库提供了优秀的自动化支持之外,对于很多NoSQL数据库一样提供了自动化配置的支持,包括:Redis, MongoDB, 等. Redis简单介绍 Redi ...

  9. Kafka设计解析(三)Kafka High Availability (下)

    转载自 技术世界,原文链接 Kafka设计解析(三)- Kafka High Availability (下) 摘要 本文在上篇文章基础上,更加深入讲解了Kafka的HA机制,主要阐述了HA相关各种场 ...

  10. N项阶乘累加求和新算法

    pdf原版链接