https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384

The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
 

代码:

#include <bits/stdc++.h>
using namespace std; #define inf 0x3f3f3f3f
int N, M, K;
int dis[220][220];
int vis[220], go[220]; int main() {
scanf("%d%d", &N, &M);
memset(dis, inf, sizeof(dis));
while(M --) {
int st, en, cost;
scanf("%d%d%d", &st, &en, &cost);
if(cost < dis[st][en]) {
dis[st][en] = cost;
dis[en][st] = dis[st][en];
}
} scanf("%d", &K);
int temp = 0, ans = INT_MAX;
for(int k = 1; k <= K; k ++) {
int T;
bool can = false;
int cnt1 = 0, cnt2 = 0;
memset(vis, 0, sizeof(vis));
bool flag = true;
int sum = 0;
scanf("%d", &T);
for(int i = 1; i <= T; i ++) {
scanf("%d", &go[i]);
vis[go[i]] ++;
if(i > 1) {
if(dis[go[i]][go[i - 1]] != inf) {
sum += dis[go[i]][go[i - 1]];
}
else flag = false;
}
} printf("Path %d: ", k);
if(!flag)
printf("NA (Not a TS cycle)\n");
else {
int iscycle = 0;
for(int i = 1; i <= N; i ++) {
if(vis[i] == 0)
iscycle = 1;
if(vis[i] == 1) cnt1 ++;
if(vis[i] > 1) cnt2 ++;
} if(iscycle == 1) printf("%d (Not a TS cycle)\n", sum);
else if(cnt2 == 1 && vis[go[1]] == 2) {
can = true;
printf("%d (TS simple cycle)\n", sum);
}
else if(cnt2 >= 1 && vis[go[1]] >= 2) {
can = true;
printf("%d (TS cycle)\n", sum);
}
else if(cnt2 >= 1 && vis[go[1]] < 2)
printf("%d (Not a TS cycle)\n", sum);
else printf("%d (Not a TS cycle)\n", sum); if(can && sum < ans) {
ans = sum;
temp = k;
} } } printf("Shortest Dist(%d) = %d\n", temp, ans);
return 0;
}

  被图论支配的上午 暴躁 Be 主 在线编程

一会有牛客的比赛 哭咧咧

PAT 甲级 1150 Travelling Salesman Problem的更多相关文章

  1. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  2. 1150 Travelling Salesman Problem

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  5. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. 20155213 《网络攻防》 Exp1 PC平台逆向破解

    20155213 <网络攻防> Exp1 PC平台逆向破解(5)M 实践内容 通过对实践对象--pwn20155213的linux可执行文件的修改或输入,完成以下三块: 手工修改可执行文件 ...

  2. 2017-2018-2 《网络对抗技术》20155322 Exp6 信息搜集与漏洞扫描

    [-= 博客目录 =-] 1-实践目标 1.1-实践介绍 1.2-实践内容 1.3-实践要求 2-实践过程 2.1-Google hacking & ZoomEye 2.2-DNS.IP信息收 ...

  3. VBA中字符串连接/字符串拼接中“&”和“+”的区别

    VBA中字符串连接/字符串拼接中“&”和“+”的区别   在VBA中用于字符串连接的只有“&”和“+”两种运算符. 1.“&”是强制性连接,就是不管什么都连接. 2.“+”是对 ...

  4. CF 1114 E. Arithmetic Progression

    E. Arithmetic Progression 链接 题意: 交互题. 有一个等差序列,现已打乱顺序,最多询问60次来确定首项和公差.每次可以询问是否有严格大于x的数,和查看一个位置的数. 分析: ...

  5. [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]

    题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...

  6. Windows:任务调度器

    Windows 服务器系列: Windows:查看IP地址,IP地址对应的机器名,占用的端口,以及占用该端口的应用程 Windows:使用Dos命令管理服务(Services) Windows:任务调 ...

  7. 菜鸟vimer成长记——第4.0章、Vim插件管理利器-Vundle

    定义 Vundle是vim bunler和简称,它是一个vim插件管理器. Vim本身缺乏对插件的有效管理,安装插件并配置.vimrc文件非常不便.gmarik受到Ruby的bunler的启发,开发了 ...

  8. 复杂值vs原始值&&内存空间

    写在前面 最近在读<JavaScript启示录>,这本书不是JavaScript的详尽的参考指南,但是把对象作为了解JavaScript的透镜,受益匪浅. 那么我们先来聊一下JavaScr ...

  9. 对最近java基础学习的一次小结

    开头想了3分钟,不知道起什么名字好,首先内容有点泛,但也都是基础知识. 对之前所学的java基础知识做了个小结,因为我是跟着网上找的黑马的基础视频看跟着学的,10天的课程硬生生给我看了这么久,也是佛了 ...

  10. monkey测试入门1

    Monkey是一款通过命令行来对我们APP进行测试的工具,可以运行在模拟器里或真机上.它向系统发送伪随机的用户事件流,实现对正应用程序进行压力测试. 官方介绍 :https://developer.a ...