https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384

The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
 

代码:

#include <bits/stdc++.h>
using namespace std; #define inf 0x3f3f3f3f
int N, M, K;
int dis[220][220];
int vis[220], go[220]; int main() {
scanf("%d%d", &N, &M);
memset(dis, inf, sizeof(dis));
while(M --) {
int st, en, cost;
scanf("%d%d%d", &st, &en, &cost);
if(cost < dis[st][en]) {
dis[st][en] = cost;
dis[en][st] = dis[st][en];
}
} scanf("%d", &K);
int temp = 0, ans = INT_MAX;
for(int k = 1; k <= K; k ++) {
int T;
bool can = false;
int cnt1 = 0, cnt2 = 0;
memset(vis, 0, sizeof(vis));
bool flag = true;
int sum = 0;
scanf("%d", &T);
for(int i = 1; i <= T; i ++) {
scanf("%d", &go[i]);
vis[go[i]] ++;
if(i > 1) {
if(dis[go[i]][go[i - 1]] != inf) {
sum += dis[go[i]][go[i - 1]];
}
else flag = false;
}
} printf("Path %d: ", k);
if(!flag)
printf("NA (Not a TS cycle)\n");
else {
int iscycle = 0;
for(int i = 1; i <= N; i ++) {
if(vis[i] == 0)
iscycle = 1;
if(vis[i] == 1) cnt1 ++;
if(vis[i] > 1) cnt2 ++;
} if(iscycle == 1) printf("%d (Not a TS cycle)\n", sum);
else if(cnt2 == 1 && vis[go[1]] == 2) {
can = true;
printf("%d (TS simple cycle)\n", sum);
}
else if(cnt2 >= 1 && vis[go[1]] >= 2) {
can = true;
printf("%d (TS cycle)\n", sum);
}
else if(cnt2 >= 1 && vis[go[1]] < 2)
printf("%d (Not a TS cycle)\n", sum);
else printf("%d (Not a TS cycle)\n", sum); if(can && sum < ans) {
ans = sum;
temp = k;
} } } printf("Shortest Dist(%d) = %d\n", temp, ans);
return 0;
}

  被图论支配的上午 暴躁 Be 主 在线编程

一会有牛客的比赛 哭咧咧

PAT 甲级 1150 Travelling Salesman Problem的更多相关文章

  1. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  2. 1150 Travelling Salesman Problem

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  5. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. linux 服务启动

    在linux上部署java服务的时候,发现服务启动正常,但是[ps -ef|grep java].[jps]看不到服务的运行. 查资料发现,[Java -jar Test.jar &      ...

  2. PostgreSQL内存使用增长观察

    磨砺技术珠矶,践行数据之道,追求卓越价值 回到上一级页面:PostgreSQL内部结构与源代码研究索引页    回到顶级页面:PostgreSQL索引页 [作者 高健@博客园  luckyjackga ...

  3. Linux部署python django程序-apache

    1.安装Apache 先卸载自带的httpd rpm -e httpd --nodeps 在网上下载四个文件 1.apr-1.4.6.tar.gz 2.apr-util-1.5.1.tar.gz 3. ...

  4. Unity3d之Hash&Slash学习笔记之(二)--角色基础类的构建

    Hash&Slash学习笔记之(二)--角色基础类的构建 BaseStat类的构建 基本成员变量: _baseValue //基础属性值 _buffValue //增加的buff值 _expT ...

  5. 洛咕 P4199 万径人踪灭

    给了两条限制,但是第二条想想是没用的,直接manacher就可以减掉多余的部分了,所以要求满足第一条的方案 也不难,可以想到枚举每个中心点,计算两边有多少对距离中心相等的位置值也相等,假设有\(t\) ...

  6. 【JUC源码解析】ScheduledThreadPoolExecutor

    简介 它是一个线程池执行器(ThreadPoolExecutor),在给定的延迟(delay)后执行.在多线程或者对灵活性有要求的环境下,要优于java.util.Timer. 提交的任务在执行之前支 ...

  7. [PLC]ST语言二:LDP_LDF_ANDP_ANDF_ORP_ORF

    一:LDP_LDF_ANDP_ANDF_ORP_ORF基本指令 说明:简单的顺控指令不做其他说明. 控制要求:无 编程梯形图: 结构化编程ST语言: (*LDP(EN,s)/ORP(EN,S)*) M ...

  8. 人工智能AI芯片与Maker创意接轨 (中)

    在人工智能AI芯片与Maker创意接轨(上)这篇文章中,介绍人工智能与深度学习,以及深度学习技术的应用,了解内部真实的作业原理,让我们能够跟上这波AI新浪潮.系列文来到了中篇,将详细介绍目前市面上的各 ...

  9. 使用Zabbix的SNMP trap监控类型监控设备的一个例子

    本文以监控绿盟设备为例. 1.登录被监控的设备的管理系统,配置snmptrap地址指向zabbix服务器或代理服务器. snmptrap地址也叫陷阱. 2.验证是否能在zabbix服务器或代理服务器上 ...

  10. docker usage

    docker ps -a 查看物理机上面所有容器信息列表 docker exec -it $docker_id /bin/bash 进入容器以默认帐号 docker exec -it -u root ...