题目链接

题目翻译:

给出一个数n,和一个浮点数a,数n代表全集U = {1,2,...,n},然后给出

M个U的子集,如果一个集合B(是U的子集),M个集合中有至少M*a个集合包含B,

则B这个集合就是一个满足条件的集合,统计U的子集中B这种集合的个数。

对于N个数的集合,其子集,可以从N个里面挑1个,挑2个,。。。挑N个数构成。

C(n,0)+ C(n,1) + C(n,2) + C(n,3) + ..... + C(n,n) = (1+1)^n = 2^n

N个数子集共有2^n种状态,其中每一个数都代表一个状态,意思就是代表一个子集。

对于输入的M个集合。集合的状态就是2^(num-1)的和。

为何这样?

加入现有一个集合:

1 3 6 10

把它算成 2^(1-1) + 2^(3-1) + 2^(6-1) + 2^(10-1)

这个数字可以用2进制表示:

num(数字): 10 9

8 7 6 5 4

3 2 1

binary bit(二进制位): 1 0 0 0 1 0 0 1 0 1

power(对应的权值): 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

对于每个状态,是一个数,它也是一个二进制串,二进制串中为1的位置,代表了

某个数字存在与集合M,当每个数与集合M进行与运算的时候,可以求出同为1的

二进制位,得出的数与当前这个相同,则说明当前数代表的状态是集合M的子集。

AC代码:


#include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
char str[1000];
int M[55];
int main()
{
int n,m;
double a;
scanf("%d %lf ",&n,&a);
memset(M,0,sizeof(M));
m = 0;
while(gets(str))
{
int num = 0;
int len = strlen(str);
for(int i = 0; i < len; i++)
{
if(str[i]==' ')
{
M[m] = M[m] + (1<<(num-1));
num = 0;
}
else
{
num = num*10 + str[i]-'0';
}
}
M[m++] += (1<<(num-1));
}
int temp = ceil(m*a);
int state = (1<<n);
int ans = 0;
for(int i = 1; i <= state; i++)
{
int sum = 0;
for(int j = 0; j < m; j++)
{
if((i&M[j]) == i)
sum++;
}
if(sum >= temp)
ans++;
}
printf("%d\n",ans);
return 0;
}

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛:Frequent Subsets Problem (状态压缩)的更多相关文章

  1. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】

    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛  M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...

  2. HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛)

    HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛) Panda Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: ...

  3. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

  4. ICPC 2018 徐州赛区网络赛

    ACM-ICPC 2018 徐州赛区网络赛  去年博客记录过这场比赛经历:该死的水题  一年过去了,不被水题卡了,但难题也没多做几道.水平微微有点长进.     D. Easy Math 题意:   ...

  5. Skiing 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题(拓扑序求有向图最长路)

    参考博客(感谢博主):http://blog.csdn.net/yo_bc/article/details/77917288 题意: 给定一个有向无环图,求该图的最长路. 思路: 由于是有向无环图,所 ...

  6. [刷题]ACM/ICPC 2016北京赛站网络赛 第1题 第3题

    第一次玩ACM...有点小紧张小兴奋.这题目好难啊,只是网赛就这么难...只把最简单的两题做出来了. 题目1: 代码: //#define _ACM_ #include<iostream> ...

  7. 2016 ACM/ICPC亚洲区大连站-重现赛 解题报告

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5979 按AC顺序: I - Convex Time limit    1000 ms Memory li ...

  8. 2014ACM/ICPC亚洲区鞍山赛区现场赛1009Osu!

    鞍山的签到题,求两点之间的距离除以时间的最大值.直接暴力过的. A - Osu! Time Limit:1000MS     Memory Limit:262144KB     64bit IO Fo ...

  9. 2017ICPC南宁赛区网络赛 Minimum Distance in a Star Graph (bfs)

    In this problem, we will define a graph called star graph, and the question is to find the minimum d ...

  10. 2017ICPC南宁赛区网络赛 Overlapping Rectangles(重叠矩阵面积和=离散化模板)

    There are nnn rectangles on the plane. The problem is to find the area of the union of these rectang ...

随机推荐

  1. 通过session 怎么防止表单的重复提交!

    1.在提交表单的时候使用隐藏域: String tokenValue=new Date().getTime(); <input type="hidden" name=&quo ...

  2. Workstation和Virtualbox的虚拟机磁盘扩容方式.

    1. 虚拟机磁盘管理, 更改磁盘格式是一个场景 还有一个场景是 硬盘空间不够了 需要扩充. 方法主要有两个. 如果是workstation的的虚拟机. 并且没有快照 可以直接GUI操作 如下图: 虚拟 ...

  3. 抽奖系统 random()

    random() 方法可返回介于 0 ~ 1 之间的一个随机数. document.write(parseInt(10*Math.random())); //输出0-10之间的随机整数document ...

  4. Python Web开发之Flask

    PythonWEB框架之Flask 前言: Django:1个重武器,包含了web开发中常用的功能.组件的框架:(ORM.Session.Form.Admin.分页.中间件.信号.缓存.ContenT ...

  5. BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)

    一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...

  6. GIT 旧库迁移到新库

    1.在gitlab创建新项目,得到SSH地址2.用gitextent打开旧项目,记得所有分支合并成一个(如果确实无法合并,则需要一个个复位推送)3.复位到需要推送的节点分支4.打开菜单栏的档案库,管理 ...

  7. 【BootStrap】Table的基本使用

    一.前言        新年新气象,转眼今年就28了,不知道今年能不能把妹成功呢?哈哈哈!上班第一天,部门Web技术主管给每个同事都发了红包鼓励大家今年加油,我作为新转入部门员工不能给团队掉链子,要加 ...

  8. 编写shell脚本需要特别关注的注意点

    shell脚本中的条件判断句式 1. if [ condition ];then statement fi 2. If [ condition ];then statement elif [ cond ...

  9. D. Monitor Educational Codeforces Round 28

    http://codeforces.com/contest/846/problem/D 二分答案 适合于: 判断在t时候第一次成立 哪个状态是最小代价 #include <cstdio> ...

  10. 【位运算】判断一个数是否为2的n次方

    import java.util.Scanner; /** * 功能:用位运算,判断一个数是否为2的n次方. * 思路:用1做移位操作,然后判断移位后的值是否与给定的数相同. */ public cl ...