▶ 按照书上的例子,使用 async 导语实现主机与设备端的异步计算

● 代码,非异步的代码只要将其中的 async 以及第 29 行删除即可

 #include <stdio.h>
#include <stdlib.h>
#include <openacc.h> #define N 10240000
#define COUNT 200 // 多算几次,增加耗时 int main()
{
int *a = (int *)malloc(sizeof(int)*N);
int *b = (int *)malloc(sizeof(int)*N);
int *c = (int *)malloc(sizeof(int)*N); #pragma acc enter data create(a[0:N]) async // 在设备上赋值 a
for (int i = ; i < COUNT; i++)
{
#pragma acc parallel loop async
for (int j = ; j < N; j++)
a[j] = (i + j) * ;
} for (int i = ; i < COUNT; i++) // 在主机上赋值 b
{
for (int j = ; j < N; j++)
b[j] = (i + j) * ;
} #pragma acc update host(a[0:N]) async // 异步必须 update a,否则还没同步就参与 c 的运算
#pragma acc wait // 非异步时去掉该行 for (int i = ; i < N; i++)
c[i] = a[i] + b[i]; #pragma acc update device(a[0:N]) async // 没啥用,增加耗时
#pragma acc exit data delete(a[0:N]) printf("\nc[1] = %d\n", c[]);
free(a);
free(b);
free(c);
//getchar();
return ;
}

● 输出结果(是否异步,差异仅在行号、耗时上)

//+-----------------------------------------------------------------------------非异步
D:\Code\OpenACC\OpenACCProject\OpenACCProject>pgcc main.c -acc -Minfo -o main_acc.exe
main:
, Generating enter data create(a[:])
, Accelerator kernel generated
Generating Tesla code
, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
, Generating implicit copyout(a[:])
, Generating update self(a[:])
, Generating update device(a[:])
Generating exit data delete(a[:]) D:\Code\OpenACC\OpenACCProject\OpenACCProject>main_acc.exe
launch CUDA kernel file=D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c function=main
line= device= threadid= queue= num_gangs= num_workers= vector_length= grid= block=
launch CUDA kernel file=D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c function=main
line= device= threadid= queue= num_gangs= num_workers= vector_length= grid= block= ... // 省略 launch CUDA kernel file=D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c function=main
line= device= threadid= queue= num_gangs= num_workers= vector_length= grid= block= c[] =
PGI: "acc_shutdown" not detected, performance results might be incomplete.
Please add the call "acc_shutdown(acc_device_nvidia)" to the end of your application to ensure that the performance results are complete. Accelerator Kernel Timing data
D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c
main NVIDIA devicenum=
time(us): ,
: data region reached time
: compute region reached times
: kernel launched times
grid: [] block: []
elapsed time(us): total=, max= min= avg=
: data region reached times
: update directive reached time
: data copyout transfers:
device time(us): total=, max=, min= avg=,
: update directive reached time
: data copyin transfers:
device time(us): total=, max=, min= avg=,
: data region reached time //------------------------------------------------------------------------------有异步
D:\Code\OpenACC\OpenACCProject\OpenACCProject>pgcc main.c -acc -Minfo -o main_acc.exe
main:
, Generating enter data create(a[:])
, Accelerator kernel generated
Generating Tesla code
, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
, Generating implicit copyout(a[:])
, Generating update self(a[:])
, Generating update device(a[:])
Generating exit data delete(a[:]) D:\Code\OpenACC\OpenACCProject\OpenACCProject>main_acc.exe
launch CUDA kernel file=D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c function=main
line= device= threadid= queue= num_gangs= num_workers= vector_length= grid= block=
launch CUDA kernel file=D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c function=main
line= device= threadid= queue= num_gangs= num_workers= vector_length= grid= block= ... // 省略 launch CUDA kernel file=D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c function=main
line= device= threadid= queue= num_gangs= num_workers= vector_length= grid= block= c[] =
PGI: "acc_shutdown" not detected, performance results might be incomplete.
Please add the call "acc_shutdown(acc_device_nvidia)" to the end of your application to ensure that the performance results are complete. Accelerator Kernel Timing data
Timing may be affected by asynchronous behavior
set PGI_ACC_SYNCHRONOUS to to disable async() clauses
D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c
main NVIDIA devicenum=
time(us): ,
: data region reached time
: compute region reached times
: kernel launched times
grid: [] block: []
elapsed time(us): total=, max= min= avg=
: data region reached times
: update directive reached time
: data copyout transfers:
device time(us): total=, max=, min= avg=,
: update directive reached time
: data copyin transfers:
device time(us): total=, max=, min= avg=,
: data region reached time

● Nvvp 的结果,我是真没看出来有较大的差别,可能例子举得不够好

● 在一个设备上同时使用两个命令队列

 #include <stdio.h>
#include <stdlib.h>
#include <openacc.h> #define N 10240000
#define COUNT 200 int main()
{
int *a = (int *)malloc(sizeof(int)*N);
int *b = (int *)malloc(sizeof(int)*N);
int *c = (int *)malloc(sizeof(int)*N); #pragma acc enter data create(a[0:N]) async(1)
for (int i = ; i < COUNT; i++)
{
#pragma acc parallel loop async(1)
for (int j = ; j < N; j++)
a[j] = (i + j) * ;
} #pragma acc enter data create(b[0:N]) async(2)
for (int i = ; i < COUNT; i++)
{
#pragma acc parallel loop async(2)
for (int j = ; j < N; j++)
b[j] = (i + j) * ;
} #pragma acc enter data create(c[0:N]) async(2)
#pragma acc wait(1) async(2) #pragma acc parallel loop async(2)
for (int i = ; i < N; i++)
c[i] = a[i] + b[i]; #pragma acc update host(c[0:N]) async(2)
#pragma acc exit data delete(a[0:N], b[0:N], c[0:N]) printf("\nc[1] = %d\n", c[]);
free(a);
free(b);
free(c);
//getchar();
return ;
}

● 输出结果

D:\Code\OpenACC\OpenACCProject\OpenACCProject>pgcc main.c -acc -Minfo -o main_acc.exe
main:
, Generating enter data create(a[:])
, Accelerator kernel generated
Generating Tesla code
, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
, Generating implicit copyout(a[:])
, Generating enter data create(b[:])
, Accelerator kernel generated
Generating Tesla code
, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
, Generating implicit copyout(b[:])
, Generating enter data create(c[:])
, Accelerator kernel generated
Generating Tesla code
, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
, Generating implicit copyout(c[:])
Generating implicit copyin(b[:],a[:])
, Generating update self(c[:])
Generating exit data delete(c[:],b[:],a[:]) D:\Code\OpenACC\OpenACCProject\OpenACCProject>main_acc.exe c[] =
PGI: "acc_shutdown" not detected, performance results might be incomplete.
Please add the call "acc_shutdown(acc_device_nvidia)" to the end of your application to ensure that the performance results are complete. Accelerator Kernel Timing data
Timing may be affected by asynchronous behavior
set PGI_ACC_SYNCHRONOUS to to disable async() clauses
D:\Code\OpenACC\OpenACCProject\OpenACCProject\main.c
main NVIDIA devicenum=
time(us): ,
: data region reached time
: compute region reached times
: kernel launched times
grid: [] block: []
elapsed time(us): total=, max= min= avg=
: data region reached times
: data region reached time
: compute region reached times
: kernel launched times
grid: [] block: []
elapsed time(us): total=, max= min= avg=
: data region reached times
: data region reached time
: compute region reached time
: kernel launched time
grid: [] block: []
device time(us): total= max= min= avg=
: data region reached times
: update directive reached time
: data copyout transfers:
device time(us): total=, max=, min= avg=,
: data region reached time

● Nvvp 中,可以看到两个命令队列交替执行

● 在 PGI 命令行中使用命令 pgaccelinfo 查看设备信息

D:\Code\OpenACC\OpenACCProject\OpenACCProject>pgaccelinfo

CUDA Driver Version:           

Device Number:
Device Name: GeForce GTX
Device Revision Number: 6.1
Global Memory Size:
Number of Multiprocessors:
Concurrent Copy and Execution: Yes
Total Constant Memory:
Total Shared Memory per Block:
Registers per Block:
Warp Size:
Maximum Threads per Block:
Maximum Block Dimensions: , ,
Maximum Grid Dimensions: x x
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B
Clock Rate: MHz
Execution Timeout: Yes
Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: default
Concurrent Kernels: Yes
ECC Enabled: No
Memory Clock Rate: MHz
Memory Bus Width: bits
L2 Cache Size: bytes
Max Threads Per SMP:
Async Engines: // 有两个异步引擎,支持两个命令队列并行
Unified Addressing: Yes
Managed Memory: Yes
Concurrent Managed Memory: No
PGI Compiler Option: -ta=tesla:cc60

OpenACC 异步计算的更多相关文章

  1. Task:取消异步计算限制操作 & 捕获任务中的异常

    Why:ThreadPool没有内建机制标记当前线程在什么时候完成,也没有机制在操作完成时获得返回值,因而推出了Task,更精确的管理异步线程. How:通过构造方法的参数TaskCreationOp ...

  2. 13.FutureTask异步计算

    FutureTask     1.可取消的异步计算,FutureTask实现了Future的基本方法,提供了start.cancel 操作,可以查询计算是否完成,并且可以获取计算     的结果.结果 ...

  3. 怎样给ExecutorService异步计算设置超时

    ExecutorService接口使用submit方法会返回一个Future<V>对象.Future表示异步计算的结果.它提供了检查计算是否完毕的方法,以等待计算的完毕,并获取计算的结果. ...

  4. java异步计算Future的使用(转)

    从jdk1.5开始我们可以利用Future来跟踪异步计算的结果.在此之前主线程要想获得工作线程(异步计算线程)的结果是比较麻烦的事情,需要我们进行特殊的程序结构设计,比较繁琐而且容易出错.有了Futu ...

  5. 使用QFuture类监控异步计算的结果

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Amnes1a/article/details/65630701在Qt中,为我们提供了好几种使用线程的 ...

  6. gearman(异步计算)学习

    Gearman是什么? 它是分布式的程序调用框架,可完成跨语言的相互调 用,适合在后台运行工作任务.最初是2005年perl版本,2008年发布C/C++版本.目前大部分源码都是(Gearmand服务 ...

  7. OpenACC 绘制曼德勃罗集

    ▶ 书上第四章,用一系列步骤优化曼德勃罗集的计算过程. ● 代码 // constants.h ; ; ; ; const double xmin=-1.7; ; const double ymin= ...

  8. OpenACC Julia 图形

    ▶ 书上的代码,逐步优化绘制 Julia 图形的代码 ● 无并行优化(手动优化了变量等) #include <stdio.h> #include <stdlib.h> #inc ...

  9. 如何解救在异步Java代码中已检测的异常

    Java语言通过已检测异常语法所提供的静态异常检测功能非常实用,通过它程序开发人员可以用很便捷的方式表达复杂的程序流程. 实际上,如果某个函数预期将返回某种类型的数据,通过已检测异常,很容易就可以扩展 ...

随机推荐

  1. Linux的getrlimit与setrlimit系统调用

    转自:http://www.cnblogs.com/niocai/archive/2012/04/01/2428128.html 功能描述:获取或设定资源使用限制.每种资源都有相关的软硬限制,软限制是 ...

  2. TweenMax.allTo

    需要多个MC进行相同的缓动.比如下面这个游戏菜单.三个按钮的缓动是相同的,都缓动到同一个x坐标位置.然后同时有缓动出舞台. 如果有TweenLite实现的话,需要             if (is ...

  3. 监控Linux的Steps&Q&A

    spolight的下载地址:https://www.quest.com/spotlight-on-windows/ 问题1.sar -u 之后,只有一条记录.这种情况执行一下:sudo sar -d; ...

  4. PHP 7.0 EOL (PHP 技术支持相关)

    PHP 7.0 EOL (PHP 支持相关) PHP 5.6 于 2018-12-31 结束(EOL) 从图表看出,PHP 7.0 是一个过渡版本,现在已经 EOL. 而 PHP 7.1 将于明年年底 ...

  5. Oracle 10g RAC OCR 和 VotingDisk 的备份与恢复

    Oracle RAC 中OCR 和Voting Disk 备份在我的blog: Oracle RAC 常用维护工具和命令 中已经有说明,现在再次把它单独拿出做一个说明, 因为OCR 和Voting D ...

  6. 导出pb模型之后测试的python代码

    链接:https://blog.csdn.net/thriving_fcl/article/details/75213361 saved_model模块主要用于TensorFlow Serving.T ...

  7. 微信小程序的视频教程

    极客学院小程序视频教程: 链接:https://pan.baidu.com/s/1VpKnvnsn-T6Nd79bsi4ugg 密码:0ta9 小程序项目实战: 链接:https://pan.baid ...

  8. java newInstance() 的参数版本与无参数版本详解

    newInstance() 的参数版本与无参数版本详解 博客分类: Core Java   通过反射创建新的类示例,有两种方式: Class.newInstance() Constructor.new ...

  9. Hadoop专业解决方案-第13章 Hadoop的发展趋势

    一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第13章 Hadoop的发展趋势小组已经翻译完成,在此对 ...

  10. Linux内核深入研究之进程的线性地址空间-传统版

    引言: 了解Linux环境下,进程的地址空间划分,对于我们理解Linux应用程序有很大的帮助,否则会被New与Malloc之类的指针操作弄的晕头转向,本文基于Linux内核讲述了Linux/Unix线 ...