马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distribution/equilibrium distribution(目标分布),最后选用逼近后的样本作为最终的采样。那么为什么要用MCMC呢,在什么情况下使用呢,这里给出一些个人的学习心 得。

1. 什么情况下用?

很多书籍或论文给出的情况是,目标分布难以被直接估计的情况下使用,那么具 体是什么情况呢?举一个很简单的例子:现在对3个Binary变量X1,X2,X3进行采样,而三个变量之间的关系可以用存在自转移概率的Markov network网描述,如果直接采样,Forward sampling的方法不可用,因为这三个变量之间不存在任何前后顺序,那么我假设从样本X1=F,X2=F,X3=F开始,采样X1,这时由于变量间相 互转移概率已知,可得到如下采样概率:P(X1) = Pt(X1|X2=F)Pt(X1|X3=F),如果得到样本X1=T,继续采样X2,按P(X2) = Pt(X2|X1=T)Pt(X2|X3=F),得到样本X2=F,继续采样X3,按P(X3) = Pt(X3|X1=T)Pt(X3|X2=F),得到样本X3=T。那么这样就有了两组样本:

1:F,F,F

2:T,F,T

继续采样可能得到

3:T,F,F

4:F,T,T

5:... ...

直到样本不再变化的时候,可以认为逼近了stationary distribution,取这时的样本作为最终采样。

2.哪几种用法

目前比较著名的实现方法有:

Gibbs sampling上一节中3个变量的采样的例子就是这种方法,对某一变量采样时,选用其它变量给定的条件概率。

Metropolis–Hastings algorithm这个方法的特点是引入了生成样本的the probability of acceptance接受概率。

为什么要用Markov chain Monte Carlo (MCMC)的更多相关文章

  1. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  2. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  3. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  4. [Bayes] MCMC (Markov Chain Monte Carlo)

    不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均 ...

  5. Markov Chain Monte Carlo Simulation using C# and MathNet

    Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document i ...

  6. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  7. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  8. Monte Carlo方法简介(转载)

    Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...

  9. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

随机推荐

  1. Android设计和开发系列第一篇:Notifications通知(Develop—API Guides)

    Notifications IN THIS DOCUMENT Design Considerations Creating a Notification Required notification c ...

  2. C#设计模式--设配器模式

    0.C#设计模式-简单工厂模式 1.C#设计模式--工厂方法模式 2.C#设计模式--抽象工厂模式 3.C#设计模式--单例模式 4.C#设计模式--建造者模式 5.C#设计模式--原型模式 设计模式 ...

  3. Mysql语句优化

    总结总结自己犯过的错,网上说的与自己的Mysql语句优化的想法. 1.查询数据库的语句的字段,尽量做到用多少写多少. 2.建索引,确保查询速度. 3.orm框架自带的方法会损耗一部分性能,这个性能应该 ...

  4. Java秒杀简单设计三:数据封装类

    上一篇https://www.cnblogs.com/taiguyiba/p/9828984.html 整合了数据库表和Dao层代码 这一篇继续设计数据封装类: 涉及到获取秒杀地址,查询,返回秒杀结果 ...

  5. Spark2 Dataset统计指标:mean均值,variance方差,stddev标准差,corr(Pearson相关系数),skewness偏度,kurtosis峰度

    val df4=spark.sql("SELECT mean(age),variance(age),stddev(age),corr(age,yearsmarried),skewness(a ...

  6. HTTP与HTTPS对访问速度(性能)的影响【转】

    1 前言 HTTPS 在保护用户隐私,防止流量劫持方面发挥着非常关键的作用,但与此同时,HTTPS 也会降低用户访问速度,增加网站服务器的计算资源消耗. 本文主要介绍 https 对用户体验的影响. ...

  7. 地址转换函数:inet_aton & inet_ntoa & inet_addr和inet_pton & inet_ntop

    在Unix网络编程中,我们常用到地址转换函数,它将ASCII字符串(如"206.62.226.33")与网络字节序的二进制值(这个值保存在套接口地址结构中)间进行地址的转换. 1. ...

  8. ABP之框架体系

    一 .框架体系的介绍 ABP框架采用的是DDD(领域驱动设计)的原则,可以很方便实现项目之间的松耦合,采用模块化的方式,方便对框架的扩展. 按照DDD的原则,首先将项目分为四层: 展现层:用来展现给用 ...

  9. list,set中可以存放Object类型对象

    List<JSONObject> series = new ArrayList<JSONObject>();

  10. POJ-1887 Testing the CATCHER(dp,最长下降子序列)

    Testing the CATCHER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16515 Accepted: 6082 ...