为什么要用Markov chain Monte Carlo (MCMC)
马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distribution/equilibrium distribution(目标分布),最后选用逼近后的样本作为最终的采样。那么为什么要用MCMC呢,在什么情况下使用呢,这里给出一些个人的学习心 得。
1. 什么情况下用?
很多书籍或论文给出的情况是,目标分布难以被直接估计的情况下使用,那么具 体是什么情况呢?举一个很简单的例子:现在对3个Binary变量X1,X2,X3进行采样,而三个变量之间的关系可以用存在自转移概率的Markov network网描述,如果直接采样,Forward sampling的方法不可用,因为这三个变量之间不存在任何前后顺序,那么我假设从样本X1=F,X2=F,X3=F开始,采样X1,这时由于变量间相 互转移概率已知,可得到如下采样概率:P(X1) = Pt(X1|X2=F)Pt(X1|X3=F),如果得到样本X1=T,继续采样X2,按P(X2) = Pt(X2|X1=T)Pt(X2|X3=F),得到样本X2=F,继续采样X3,按P(X3) = Pt(X3|X1=T)Pt(X3|X2=F),得到样本X3=T。那么这样就有了两组样本:
1:F,F,F
2:T,F,T
继续采样可能得到
3:T,F,F
4:F,T,T
5:... ...
直到样本不再变化的时候,可以认为逼近了stationary distribution,取这时的样本作为最终采样。
2.哪几种用法
目前比较著名的实现方法有:
Gibbs sampling上一节中3个变量的采样的例子就是这种方法,对某一变量采样时,选用其它变量给定的条件概率。
Metropolis–Hastings algorithm这个方法的特点是引入了生成样本的the probability of acceptance接受概率。
为什么要用Markov chain Monte Carlo (MCMC)的更多相关文章
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
- [Bayes] MCMC (Markov Chain Monte Carlo)
不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均 ...
- Markov Chain Monte Carlo Simulation using C# and MathNet
Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document i ...
- Monte Carlo Approximations
准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...
- History of Monte Carlo Methods - Part 1
History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...
- Monte Carlo方法简介(转载)
Monte Carlo方法简介(转载) 今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...
随机推荐
- java基础---->数组的基础使用(二)
这里对List(jdk 1.7)列表里面的一些方法做一些简单的分析,以避免有些函数的误用.手写瑶笺被雨淋,模糊点画费探寻,纵然灭却书中字,难灭情人一片心. List中注意的方法 一.Arrays.as ...
- PowerDesigner 同名问题解决 Entity Attribute name uniqueness
选择"Tools -> Model Options"后 "Allow reuse"复选框,建议把这个钩也去掉 Tool->check model.. ...
- Linux 下安装JDK1.8
本文主要介绍的是如何是Linux环境下安装JDK的,因为Linux环境下,很多时候也离不开Java的,下面笔者就和大家一起分享如何jdk1.8的过程吧. 一.安装环境 操作系统:Red Hat Ent ...
- 公钥基础设施体系和EJBCA的一些概念
最近一段时间的在公司做的事情是: 1. 为公司的一些线上系统启用https(使用nginx反向代理的方式来实现,之前的应用无需做改动) 2.为符合规则的用户颁发数字证书(自建CA来实现,目前的用途是给 ...
- CentOS7下Elastic Stack 5.0日志分析系统搭建
原文链接:http://www.2cto.com/net/201612/572296_3.html 在http://localhost:5601下新建索引页面输入“metricbeat-*”,之后ki ...
- windows本地启动tomcat闪退
da开cmd, 进入tomcat所在目录的bin目录: 执行startup.bat 查看设置的环境变量是否正确:如果不正确则在windows中设置正确的相关环境变量即可:
- R序列seq
> seq(from=10,to=20,by=3) [1] 10 13 16 19 > seq(from=10,to=20,length=5) [1] 10.0 12.5 15.0 17. ...
- Java--TestNG
TestNG类的配置信息: @BeforeSuite:在此套件中的所有测试运行之前,将运行带注释的方法. @AfterSuite:在此套件中的所有测试运行后,将运行带注释的方法. @Before ...
- JVM JRE JDK三者的区别和联系
一. 详细介绍1.JVM -- java virtual machineJVM就是我们常说的java虚拟机,它是整个java实现跨平台的 最核心的部分,所有的java程序会首先被编译为.class的类 ...
- POJ--1690 (Your)((Term)((Project)))(字符串处理)
(Your)((Term)((Project))) Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3353 Accepted: ...