原文链接:http://www.ruanyifeng.com/blog/2016/06/dns.html

http://www.ruanyifeng.com/blog/2012/05/internet_protocol_suite_part_i.html

DNS 是互联网核心协议之一。不管是上网浏览,还是编程开发,都需要了解一点它的知识。

本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作。我的目标是,读完此文后,你就能完全理解DNS。

一、DNS 是什么?

DNS (Domain Name System 的缩写)的作用非常简单,就是根据域名查出IP地址。你可以把它想象成一本巨大的电话本。

举例来说,如果你要访问域名math.stackexchange.com,首先要通过DNS查出它的IP地址是151.101.129.69

如果你不清楚为什么一定要查出IP地址,才能进行网络通信,建议先阅读我写的《互联网协议入门》

二、查询过程

虽然只需要返回一个IP地址,但是DNS的查询过程非常复杂,分成多个步骤。

工具软件dig可以显示整个查询过程。


$ dig math.stackexchange.com

上面的命令会输出六段信息。

第一段是查询参数和统计。

第二段是查询内容。

上面结果表示,查询域名math.stackexchange.comA记录,A是address的缩写。

第三段是DNS服务器的答复。

上面结果显示,math.stackexchange.com有四个A记录,即四个IP地址。600是TTL值(Time to live 的缩写),表示缓存时间,即600秒之内不用重新查询。

第四段显示stackexchange.com的NS记录(Name Server的缩写),即哪些服务器负责管理stackexchange.com的DNS记录。

上面结果显示stackexchange.com共有四条NS记录,即四个域名服务器,向其中任一台查询就能知道math.stackexchange.com的IP地址是什么。

第五段是上面四个域名服务器的IP地址,这是随着前一段一起返回的。

第六段是DNS服务器的一些传输信息。

上面结果显示,本机的DNS服务器是192.168.1.253,查询端口是53(DNS服务器的默认端口),以及回应长度是305字节。

如果不想看到这么多内容,可以使用+short参数。


$ dig +short math.stackexchange.com 151.101.129.69
151.101.65.69
151.101.193.69
151.101.1.69

上面命令只返回math.stackexchange.com对应的4个IP地址(即A记录)。

三、DNS服务器

下面我们根据前面这个例子,一步步还原,本机到底怎么得到域名math.stackexchange.com的IP地址。

首先,本机一定要知道DNS服务器的IP地址,否则上不了网。通过DNS服务器,才能知道某个域名的IP地址到底是什么。

DNS服务器的IP地址,有可能是动态的,每次上网时由网关分配,这叫做DHCP机制;也有可能是事先指定的固定地址。Linux系统里面,DNS服务器的IP地址保存在/etc/resolv.conf文件。

上例的DNS服务器是192.168.1.253,这是一个内网地址。有一些公网的DNS服务器,也可以使用,其中最有名的就是Google的8.8.8.8和Level 3的4.2.2.2

本机只向自己的DNS服务器查询,dig命令有一个@参数,显示向其他DNS服务器查询的结果。


$ dig @4.2.2.2 math.stackexchange.com

上面命令指定向DNS服务器4.2.2.2查询。

四、域名的层级

DNS服务器怎么会知道每个域名的IP地址呢?答案是分级查询。

请仔细看前面的例子,每个域名的尾部都多了一个点。

比如,域名math.stackexchange.com显示为math.stackexchange.com.。这不是疏忽,而是所有域名的尾部,实际上都有一个根域名。

举例来说,www.example.com真正的域名是www.example.com.root,简写为www.example.com.。因为,根域名.root对于所有域名都是一样的,所以平时是省略的。

根域名的下一级,叫做"顶级域名"(top-level domain,缩写为TLD),比如.com.net;再下一级叫做"次级域名"(second-level domain,缩写为SLD),比如www.example.com里面的.example,这一级域名是用户可以注册的;再下一级是主机名(host),比如www.example.com里面的www,又称为"三级域名",这是用户在自己的域里面为服务器分配的名称,是用户可以任意分配的。

总结一下,域名的层级结构如下。


主机名.次级域名.顶级域名.根域名 # 即 host.sld.tld.root

五、根域名服务器

DNS服务器根据域名的层级,进行分级查询。

需要明确的是,每一级域名都有自己的NS记录,NS记录指向该级域名的域名服务器。这些服务器知道下一级域名的各种记录。

所谓"分级查询",就是从根域名开始,依次查询每一级域名的NS记录,直到查到最终的IP地址,过程大致如下。

  1. 从"根域名服务器"查到"顶级域名服务器"的NS记录和A记录(IP地址)
  2. 从"顶级域名服务器"查到"次级域名服务器"的NS记录和A记录(IP地址)
  3. 从"次级域名服务器"查出"主机名"的IP地址

仔细看上面的过程,你可能发现了,没有提到DNS服务器怎么知道"根域名服务器"的IP地址。回答是"根域名服务器"的NS记录和IP地址一般是不会变化的,所以内置在DNS服务器里面。

下面是内置的根域名服务器IP地址的一个例子

上面列表中,列出了根域名(.root)的三条NS记录A.ROOT-SERVERS.NETB.ROOT-SERVERS.NETC.ROOT-SERVERS.NET,以及它们的IP地址(即A记录)198.41.0.4192.228.79.201192.33.4.12

另外,可以看到所有记录的TTL值是3600000秒,相当于1000小时。也就是说,每1000小时才查询一次根域名服务器的列表。

目前,世界上一共有十三组根域名服务器,从A.ROOT-SERVERS.NET一直到M.ROOT-SERVERS.NET

六、分级查询的实例

dig命令的+trace参数可以显示DNS的整个分级查询过程。


$ dig +trace math.stackexchange.com

上面命令的第一段列出根域名.的所有NS记录,即所有根域名服务器。

根据内置的根域名服务器IP地址,DNS服务器向所有这些IP地址发出查询请求,询问math.stackexchange.com的顶级域名服务器com.的NS记录。最先回复的根域名服务器将被缓存,以后只向这台服务器发请求。

接着是第二段。

上面结果显示.com域名的13条NS记录,同时返回的还有每一条记录对应的IP地址。

然后,DNS服务器向这些顶级域名服务器发出查询请求,询问math.stackexchange.com的次级域名stackexchange.com的NS记录。

上面结果显示stackexchange.com有四条NS记录,同时返回的还有每一条NS记录对应的IP地址。

然后,DNS服务器向上面这四台NS服务器查询math.stackexchange.com的主机名。

上面结果显示,math.stackexchange.com有4条A记录,即这四个IP地址都可以访问到网站。并且还显示,最先返回结果的NS服务器是ns-463.awsdns-57.com,IP地址为205.251.193.207

七、NS 记录的查询

dig命令可以单独查看每一级域名的NS记录。


$ dig ns com
$ dig ns stackexchange.com

+short参数可以显示简化的结果。


$ dig +short ns com
$ dig +short ns stackexchange.com

八、DNS的记录类型

域名与IP之间的对应关系,称为"记录"(record)。根据使用场景,"记录"可以分成不同的类型(type),前面已经看到了有A记录和NS记录。

常见的DNS记录类型如下。

(1) A:地址记录(Address),返回域名指向的IP地址。

(2) NS:域名服务器记录(Name Server),返回保存下一级域名信息的服务器地址。该记录只能设置为域名,不能设置为IP地址。

(3)MX:邮件记录(Mail eXchange),返回接收电子邮件的服务器地址。

(4)CNAME:规范名称记录(Canonical Name),返回另一个域名,即当前查询的域名是另一个域名的跳转,详见下文。

(5)PTR:逆向查询记录(Pointer Record),只用于从IP地址查询域名,详见下文。

一般来说,为了服务的安全可靠,至少应该有两条NS记录,而A记录和MX记录也可以有多条,这样就提供了服务的冗余性,防止出现单点失败。

CNAME记录主要用于域名的内部跳转,为服务器配置提供灵活性,用户感知不到。举例来说,facebook.github.io这个域名就是一个CNAME记录。


$ dig facebook.github.io ... ;; ANSWER SECTION:
facebook.github.io. 3370 IN CNAME github.map.fastly.net.
github.map.fastly.net. 600 IN A 103.245.222.133

上面结果显示,facebook.github.io的CNAME记录指向github.map.fastly.net。也就是说,用户查询facebook.github.io的时候,实际上返回的是github.map.fastly.net的IP地址。这样的好处是,变更服务器IP地址的时候,只要修改github.map.fastly.net这个域名就可以了,用户的facebook.github.io域名不用修改。

由于CNAME记录就是一个替换,所以域名一旦设置CNAME记录以后,就不能再设置其他记录了(比如A记录和MX记录),这是为了防止产生冲突。举例来说,foo.com指向bar.com,而两个域名各有自己的MX记录,如果两者不一致,就会产生问题。由于顶级域名通常要设置MX记录,所以一般不允许用户对顶级域名设置CNAME记录。

PTR记录用于从IP地址反查域名。dig命令的-x参数用于查询PTR记录。


$ dig -x 192.30.252.153 ... ;; ANSWER SECTION:
153.252.30.192.in-addr.arpa. 3600 IN PTR pages.github.com.

上面结果显示,192.30.252.153这台服务器的域名是pages.github.com

逆向查询的一个应用,是可以防止垃圾邮件,即验证发送邮件的IP地址,是否真的有它所声称的域名。

dig命令可以查看指定的记录类型。


$ dig a github.com
$ dig ns github.com
$ dig mx github.com

九、其他DNS工具

除了dig,还有一些其他小工具也可以使用。

(1)host 命令

host命令可以看作dig命令的简化版本,返回当前请求域名的各种记录。


$ host github.com github.com has address 192.30.252.121
github.com mail is handled by 5 ALT2.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 10 ALT4.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 10 ALT3.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 5 ALT1.ASPMX.L.GOOGLE.COM.
github.com mail is handled by 1 ASPMX.L.GOOGLE.COM. $ host facebook.github.com facebook.github.com is an alias for github.map.fastly.net.
github.map.fastly.net has address 103.245.222.133

host命令也可以用于逆向查询,即从IP地址查询域名,等同于dig -x <ip>


$ host 192.30.252.153 153.252.30.192.in-addr.arpa domain name pointer pages.github.com.

(2)nslookup 命令

nslookup命令用于互动式地查询域名记录。


$ nslookup > facebook.github.io
Server: 192.168.1.253
Address: 192.168.1.253#53 Non-authoritative answer:
facebook.github.io canonical name = github.map.fastly.net.
Name: github.map.fastly.net
Address: 103.245.222.133 >

(3)whois 命令

whois命令用来查看域名的注册情况。


$ whois github.co

DNS原理入门的更多相关文章

  1. 转: DNS 原理入门 (from 阮一峰)

    转自:http://www.ruanyifeng.com/blog/2016/06/dns.html DNS 原理入门   作者: 阮一峰 日期: 2016年6月16日 DNS 是互联网核心协议之一. ...

  2. DNS 原理入门 - 阮一峰(转载)

      DNS 原理入门 作者: 阮一峰 日期: 2016年6月16日 DNS 是互联网核心协议之一.不管是上网浏览,还是编程开发,都需要了解一点它的知识. 本文详细介绍DNS的原理,以及如何运用工具软件 ...

  3. 最全面的 DNS 原理入门

    DNS 是互联网核心协议之一.不管是上网浏览,还是编程开发,都需要了解一点它的知识. 本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作.我的目标是,读完此文后,你就能完全理解DNS. 一.D ...

  4. DNS 原理入门 (转)

    DNS 是互联网核心协议之一.不管是上网浏览,还是编程开发,都需要了解一点它的知识. 本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作.我的目标是,读完此文后,你就能完全理解DNS. 一.D ...

  5. DNS 原理入门

    导读 DNS 是互联网核心协议之一.不管是上网浏览,还是编程开发,都需要了解一点它的知识.本文详细介绍DNS的原理,以及如何运用工具软件观察它的运作.我的目标是,读完此文后,你就能完全理解DNS. 一 ...

  6. 超清晰的 DNS 原理入门指南,看这一篇就够了~

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! DNS 是互联网核心协议之一.不管是上网浏览,还是编程开 ...

  7. DNS原理及其解析过程 精彩剖析

    本文章转自下面:http://369369.blog.51cto.com/319630/812889 DNS原理及其解析过程 精彩剖析 网络通讯大部分是基于TCP/IP的,而TCP/IP是基于IP地址 ...

  8. DNS原理及其解析过程【精彩剖析】(转)

      2012-03-21 17:23:10 标签:dig wireshark bind nslookup dns 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否 ...

  9. Linux系统下搭建DNS服务器——DNS原理总结

    2017-01-07 整理 DNS原理 域名到IP地址的解析过程 IP地址到域名的反向域名解析过程 抓包分析DNS报文和具体解析过程 DNS服务器搭建和配置 这个东东也是今年博主参见校招的时候被很多公 ...

随机推荐

  1. Java 代理使用及代理原理

    今天再测试Socket编程时,无法连接外网.公司用的是Http的代理.上网搜索也没看太懂,所以花了大量时间来学习.看了HTTP和TCP协议的关系好,才有所明白.现在能通过Socket使用HTTP代理了 ...

  2. Sword redis配置

    Redis 配置 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf. --查看配置 你可以通过 CONFIG 命令查看或设置配置项(使用CONFIG必须在redis客 ...

  3. USB学习笔记连载(二十):FX2LP如何实现高速和全速切换(转载)

    CYPRESS的USB外设控制器CY7C68013A是一款广泛应用于USB打印机,手机,存储设备,USB测试等多个领域的经典产品.该产品符合USB2.0协议规范,支持full speed和high s ...

  4. Linux_iptables

    Linux:网络防火墙 netfilter:Frame iptables: 生成防火墙规则,并附加到netfilter上实现数据报文过滤 NAT mangle等规则生成的工具 TCP有限状态机 LIS ...

  5. (笔记)Mysql命令delete from:删除记录

    delete from命令用于删除表中的数据. delete from命令格式:delete from 表名 where 表达式 例如,删除表 MyClass中编号为1 的记录:    mysql&g ...

  6. (笔记)Mysql命令update set:修改表中的数据

    update set命令用来修改表中的数据. update set命令格式:update 表名 set 字段=新值,… where 条件; 举例如下:mysql> update MyClass ...

  7. C语言中内存分配问题:

    推荐: C语言中内存分配 Linux size命令和C程序的存储空间布局 本大神感觉,上面的链接的内容,已经很好的说明了: 总结一下: 对于一个可执行文件,在linux下可以使用 size命令列出目标 ...

  8. unity-----------------------使用BuildAssetBundle打包

      我发现很多美工兄弟都爱问程序Unity3d为什么总丢材质? 我不排除U3d有BUG的情况下会丢材质?但是其实很多时候是人为操作而引起的. 1.不保存就在上传 这个操作太恐怖了,切记!!在 U3D里 ...

  9. memcache -- 使用场景

    memcache:分布式缓存机制 使用场景: 1.对数据的存储要求不高,就算丢失也关系不大(因为memcache是非持久化存储) 2.不适合单机使用,即不适合将memcache和数据库等都放到同一台机 ...

  10. (个人)CentOS的JDK安装

    一. 卸载JDK 1. 通过如下命令查看当前JDK的相关内容 rpm -qa | grep java 2. 如果出现如下内容 java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el ...