#python中的pandas库主要有DataFrame和Series类(面向对象的的语言更愿意叫类) DataFrame也就是
#数据框(主要是借鉴R里面的data.frame),Series也就是序列 ,pandas底层是c写的 性能很棒,有大神
#做过测试 处理亿级别的数据没问题,起性能可以跟同等配置的sas媲美
#DataFrame索引 df.loc是标签选取操作,df.iloc是位置切片操作
print(df[['row_names','Rape']])
df['行标签']
df.loc[行标签,列标签]
print(df.loc[0:2,['Rape','Murder']])
df.iloc[行位置,列位置]
df.iloc[1,1]#选取第二行,第二列的值,返回的为单个值
df.iloc[0,2],:]#选取第一行及第三行的数据
df.iloc[0:2,:]#选取第一行到第三行(不包含)的数据
df.iloc[:,1]#选取所有记录的第一列的值,返回的为一个Series
df.iloc[1,:]#选取第一行数据,返回的为一个Series
print(df.ix[1,1]) # 更广义的切片方式是使用.ix,它自动根据你给到的索引类型判断是使用位置还是标签进行切片
print(df.ix[0:2])

#DataFrame根据条件选取子集 类似于sas里面if、where ,R里面的subset之类的函数
df[df.Murder>13]
df[(df.Murder>10)&(df.Rape>30)]
df[df.sex==u'男']
#重命名 相当于sas里面的rename R软件中reshape包的中的rename
df.rename(columns={'A':'A_rename'})
df.rename(index={1:'other'})

#删除列 相当于sas中的drop R软件中的test['col']<-null
df.drop(['a','b'],axis=1) or del df[['a','b']]

#排序 相当于sas里面的sort R软件里面的df[order(x),]
df.sort(columns='C') #行排序 y轴上
df.sort(axis=1) #各个列之间位置排序 x轴上

#数据描述 相当于sas中proc menas R软件里面的summary
df.describe()

#生成新的一列 跟R里面有点类似
df['new_columns']=df['columns']
df.insert(1,'new_columns',df['B']) #效率最高
df.join(Series(df['columns'],name='new_columns'))

#列上面的追加 相当于sas中的append R里面cbind()
df.append(df1,ignore_index=True)
pd.concat([df,df1],ignore_index=True)

#最经典的join 跟sas和R里面的merge类似 跟sql里面的各种join对照
merge()

#删除重行 跟sas里面nodukey R里面的which(!duplicated(df[])类似
df.drop_duplicated()

#获取最大值 最小值的位置 有点类似矩阵里面的方法
df.idxmin(axis=0 ) df.idxmax(axis=1) 0和1有什么不同 自己摸索去

#读取外部数据跟sas的proc import R里面的read.csv等类似
read_excel() read_csv() read_hdf5() 等

与之相反的是df.to_excel() df.to_ecv()

#缺失值处理 个人觉得pandas中缺失值处理比sas和R方便多了
df.fillna(9999) #用9999填充

#链接数据库 不多说 pandas里面主要用 MySQLdb
import MySQLdb
conn=MySQLdb.connect(host="localhost",user="root",passwd="",db="mysql",use_unicode=True,charset="utf8")
read_sql() #很经典
#写数据进数据库
df.to_sql('hbase_visit',con, flavor="mysql", if_exists='replace', index=False)

#groupby 跟sas里面的中的by R软件中dplyr包中的group_by sql里面的group by功能是一样的 这里不多说

#求哑变量
dumiper=pd.get_dummies(df['key'])
df['key'].join(dumpier)

#透视表 和交叉表 跟sas里面的proc freq步类似 R里面的aggrate和cast函数类似
pd.pivot_table()
pd.crosstab()

#聚合函数经常跟group by一起组合用
df.groupby('sex').agg({'height':['mean','sum'],'weight':['count','min']})

#数据查询过滤
test.query("0.2
将STK_ID中的值过滤出来
stk_list = ['600809','600141','600329']中的全部记录过滤出来,命令是:rpt[rpt['STK_ID'].isin(stk_list)].
将dataframe中,某列进行清洗的命令
删除换行符:misc['product_desc'] = misc['product_desc'].str.replace('\n', '')
删除字符串前后空格:df["Make"] = df["Make"].map(str.strip)

如果用模糊匹配的话,命令是:
rpt[rpt['STK_ID'].str.contains(r'^600[0-9]{3}$')]

对dataframe中元素,进行类型转换

df['2nd'] = df['2nd'].str.replace(',','').astype(int) df['CTR'] = df['CTR'].str.replace('%','').astype(np.float64)
#时间变换 主要依赖于datemie 和time两个包
http://www.2cto.com/kf/201401/276088.html

#其他的一些技巧
df2[df2['A'].map(lambda x:x.startswith('61'))] #筛选出以61开头的数据
df2["Author"].str.replace("<.+>", "").head() #replace("<.+>", "")表示将字符串中以”<”开头;以”>”结束的任意子串替换为空字符串

commits = df2["Name"].head(15)
print commits.unique(), len(commits.unique()) #获的NAME的不同个数,类似于sql里面count(distinct name)

#pandas中最核心 最经典的函数apply map applymap

#这三个函数是pandas里面数据变换的核心 避免了for循环,跟R里面的apply函数类似
#主要用法不清楚可以问我

pd.concat([df1,df2],axis=1) 横向合并 ,没有axis=1 则纵向合并

pandas常用的更多相关文章

  1. pandas常用函数之shift

    shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...

  2. pandas常用函数之diff

    diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...

  3. pandas 常用函数整理

    pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...

  4. Pandas常用操作方法

    Pandas pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. pandas提 ...

  5. Python数据分析与挖掘所需的Pandas常用知识

    Python数据分析与挖掘所需的Pandas常用知识 前言Pandas基于两种数据类型:series与dataframe.一个series是一个一维的数据类型,其中每一个元素都有一个标签.series ...

  6. NumPy和Pandas常用库

    NumPy和Pandas常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数 ...

  7. Pandas常用数据结构

    Pandas 概述 Pandas(Python Data Analysis Library)是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数 ...

  8. pandas常用小trick(持续更新)

    记录一下pandas常用的小技巧,时间长了干别的去了会忘记,记录一下: 1. 在处理数据过程中涉及到label和null的处理方法 # 方法一 df['height'][df.height < ...

  9. 【转载】pandas常用函数

    原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...

  10. pandas 常用统计方法

    统计方法 pandas 对象有一些统计方法.它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series. 比如 DataFrame. ...

随机推荐

  1. python monkey 猴子补丁技术编程,修改python json dumps方法。

    1.猴子补丁就是不改变原有模块的内容的前提下,给原有模块新增方法或者修改原有模块. 一个模块的函数,如果希望改变函数的功能,不改变函数名,通常是库模块,你不可能去修改三方库的源码的,实施起来不方便,而 ...

  2. linux添加PYTHONPATH环境变量

    1.添加环境变量到pythonpath export PYTHONPATH=$PYTHONPATH:/home/myproject 查看pythonpathecho $PYTHONPATH 可以进入p ...

  3. [Module] 06 - DataBinding and MVVM

    下一步学习列表: Android DataBinding使用总结(一) *** Android DataBinding使用总结(二) Android DataBinding使用总结(三)列表展示 An ...

  4. getActionBar().setDisplayHomeAsUpEnabled(true)报空指针(已解决)

    今天捣鼓了一下午.getActionBar().setDisplayHomeAsUpEnabled(true)总是报空指针.在我的还有一个Android4.4.2的项目中就没有一点问题.我还以为是我自 ...

  5. pip更换下载源(提升下载速度)

    经常在使用Python的时候需要安装各种模块,而pip是很强大的模块安装工具,但是由于国外官方pypi经常被墙,导致不可用,或者下载速度很慢,所以我们最好是将自己使用的pip源更换一下,这样就能解决被 ...

  6. iOS 优秀文章网址收录

    1. iOS应用支持IPV6,就那点事儿 地址:http://www.jianshu.com/p/a6bab07c4062 2. iOS配置IPV6网络 地址:http://www.jianshu.c ...

  7. java中的编码和编码格式问题

    看来问的人和回答的人都不一定清楚什么是“编码和编码格式”,以及如何理解“java中字符串的编码”;首先明确几点: unicode是一种“编码”,所谓编码就是一个编号(数字)到字符的一种映射关系,就仅仅 ...

  8. Python中执行外部命令

    有很多需求需要在Python中执行shell命令.启动子进程,并捕获命令的输出和退出状态码,类似于Java中的Runtime类库. subprocess模块的使用: Python使用最广泛的是标准库的 ...

  9. U3D 游戏引擎之游戏架构脚本该如何来写

    这篇文章MOMO主要想大家说明一下我在Unity3D游戏开发中是如何写游戏脚本的,对于Unity3D这套游戏引擎来说入门极快,可是要想做好却非常的难.这篇文章的目的是让哪些已经上手Unity3D游戏引 ...

  10. Android5.x新特性之 Toolbar和Theme的使用

    Toolbar 你还在为Android 的ActionBar的文字不能随意设置位置而烦恼么?你还在为ActionBar不能自定义添加自己的布局而烦恼么?现在告诉你一个好消息,当你看到这篇文章时,就不必 ...