题目

Source

http://codeforces.com/contest/632/problem/E

Description

A thief made his way to a shop.

As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.

The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).

Find all the possible total costs of products the thief can nick into his knapsack.

Input

The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.

The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.

Output

Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.

Sample Input

3 2
1 2 3

5 5
1 1 1 1 1

3 3
3 5 11

Sample Output

2 3 4 5 6
5
9 11 13 15 17 19 21 25 27 33

分析

题目大概说给有n种价值各一的物品,每种数量都无限多,问取出k个物品能取出的物品价值和的所有情况。

用母函数解,价值为指数、存不存在为系数,构造多项式求k次幂即可。
这自然想到FFT+快速幂求,这样时间复杂度才够。

FFT直接求的话结果的系数最大到达10001000太爆炸了,当然也可以求一次卷积后非0指数重新赋值成1;不过我想着开头一次DFT结尾一次IDFT这样更快、更轻松点,所以用NTT了。。

我NTT模数取1004535809 WA在20,取998244353 WA在21。。看样子是系数取模后变为0了,数据叼叼的。。于是我就两个模数都取,然后4000多ms险过了。。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1048576 //const long long P=50000000001507329LL; // 190734863287 * 2 ^ 18 + 1
long long P=1004535809; // 479 * 2 ^ 21 + 1
//const long long P=998244353; // 119 * 2 ^ 23 + 1
const int G=3; long long mul(long long x,long long y){
return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
}
long long qpow(long long x,long long k,long long p){
long long ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
} long long wn[25];
void getwn(){
for(int i=1; i<=21; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
} int len;
void NTT(long long y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
long long w=1;
for(int j=i; j<i+(h>>1); ++j){
long long u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
long long inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(long long A[],long long B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
} NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
} long long A[MAXN],B[MAXN],C[MAXN];
long long cnt[MAXN]; int main(){
getwn();
int n,k,a;
scanf("%d%d",&n,&k);
int mx=0;
for(int i=0; i<n; ++i){
scanf("%d",&a);
++cnt[a];
mx=max(mx,a);
}
for(len=1; len<mx*k; len<<=1); memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(B,A,sizeof(B));
--k;
int tmp=k;
while(k){
if(k&1){
for(int i=0; i<len; ++i) B[i]=mul(A[i],B[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(B,-1); P=998244353;
getwn();
memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(C,A,sizeof(C));
k=tmp;
while(k){
if(k&1){
for(int i=0; i<len; ++i) C[i]=mul(A[i],C[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(C,-1); for(int i=0; i<len; ++i){
if(B[i] || C[i]) printf("%d ",i);
}
return 0;
}

Codeforces632E Thief in a Shop(NTT + 快速幂)的更多相关文章

  1. CF632E: Thief in a Shop(快速幂+NTT)(存疑)

    A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...

  2. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  3. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  4. Educational Codeforces Round 9 E. Thief in a Shop NTT

    E. Thief in a Shop   A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...

  5. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  6. BZOJ 3992 DP+NTT+快速幂

    思路: 普通的DP很好想吧 f[i][j]+=f[i-1][j*s[k]]  前i个数  mod m=j 的个数 m是质数  模数是质数  这就很有趣了 那么我们就求出来原根  所有的数都取指数 搞出 ...

  7. codeforces632E. Thief in a Shop (dp)

    A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...

  8. CF1096. G. Lucky Tickets(快速幂NTT)

    All bus tickets in Berland have their numbers. A number consists of n digits (n is even). Only k dec ...

  9. bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...

随机推荐

  1. 什么?你还不会写JQuery 插件

    前言 如今做web开发,jquery 几乎是必不可少的,就连vs神器在2010版本开始将Jquery 及ui 内置web项目里了.至于使用jquery好处这里就不再赘述了,用过的都知道.今天我们来讨论 ...

  2. Zabbix3 agent端安装(二)

    1.基础环境准备 安装zabbix的yum源,这里有必要提一点,阿里的yum源已经提供了zabbix3.0 1.1.yum源配置 rpm -ihv http://mirrors.aliyun.com/ ...

  3. Path Sum

    需如下树节点求和 5  /  \ 4     8  /     /  \ 11  13    4 / \     /  \  7    2      5   1 JavaScript实现 window ...

  4. [NHibernate]事务

    目录 写在前面 文档与系列文章 事务 增删改查 总结 写在前面 上篇文章介绍了nhibernate的增删改查方法及增加修改操作,这篇文章将介绍nhibernate的事务操作. SQL Server中的 ...

  5. Bash 中的 _ 是不是环境变量

    首先,我们想到的会是 export(等价于 declare -x)命令: $ export | grep 'declare -x _=' 没有找到,那么结论就是 _ 不是环境变量?当然没那么简单,否则 ...

  6. [译]ES6新特性:八进制和二进制整数字面量

    原文:http://whereswalden.com/2013/08/12/micro-feature-from-es6-now-in-firefox-aurora-and-nightly-binar ...

  7. 微信公众平台"微信连Wi-Fi"功能来了 线下微信增粉利器

    微信连Wi-Fi功能在第三方开发者和服务商已经有出现了,但有些成本相对会高些.近日微信公众平台新添了一个功能插件“微信连Wi-Fi”,已有微信认证过的公众号即可申请开通.赶紧去布局这个线下微信增粉利器 ...

  8. Shell入门教程:流程控制(7)break和continue

    第一节:breank命令 4种循环 for.while.until.select,如果想要提早结束循环,可在循环中使用break命令.执行break时,会跳出一层的循环,如果想跳出多层循环,可在bre ...

  9. Mac中安装Vim7.4

    Mac上的Vim Mac本身其实是预装了Vim的,但是目前的系统中都是Vim7.3版本的,而最新的Vim已经是7.4版了,因此为了能够使用最新版的vim,必须要对Mac中的vim要么升级,要么重装.在 ...

  10. iOS开发——高级篇——iOS中常见的设计模式(MVC/单例/委托/观察者)

    关于设计模式这个问题,在网上也找过一些资料,下面是我自己总结的,分享给大家 如果你刚接触设计模式,我们有好消息告诉你!首先,多亏了Cocoa的构建方式,你已经使用了许多的设计模式以及被鼓励的最佳实践. ...