Codeforces632E Thief in a Shop(NTT + 快速幂)
题目
Source
http://codeforces.com/contest/632/problem/E
Description
A thief made his way to a shop.
As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.
The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).
Find all the possible total costs of products the thief can nick into his knapsack.
Input
The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.
The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.
Output
Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.
Sample Input
3 2
1 2 3
5 5
1 1 1 1 1
3 3
3 5 11
Sample Output
2 3 4 5 6
5
9 11 13 15 17 19 21 25 27 33
分析
题目大概说给有n种价值各一的物品,每种数量都无限多,问取出k个物品能取出的物品价值和的所有情况。
用母函数解,价值为指数、存不存在为系数,构造多项式求k次幂即可。
这自然想到FFT+快速幂求,这样时间复杂度才够。
FFT直接求的话结果的系数最大到达10001000太爆炸了,当然也可以求一次卷积后非0指数重新赋值成1;不过我想着开头一次DFT结尾一次IDFT这样更快、更轻松点,所以用NTT了。。
我NTT模数取1004535809 WA在20,取998244353 WA在21。。看样子是系数取模后变为0了,数据叼叼的。。于是我就两个模数都取,然后4000多ms险过了。。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1048576 //const long long P=50000000001507329LL; // 190734863287 * 2 ^ 18 + 1
long long P=1004535809; // 479 * 2 ^ 21 + 1
//const long long P=998244353; // 119 * 2 ^ 23 + 1
const int G=3; long long mul(long long x,long long y){
return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
}
long long qpow(long long x,long long k,long long p){
long long ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
} long long wn[25];
void getwn(){
for(int i=1; i<=21; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
} int len;
void NTT(long long y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
long long w=1;
for(int j=i; j<i+(h>>1); ++j){
long long u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
long long inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(long long A[],long long B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
} NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
} long long A[MAXN],B[MAXN],C[MAXN];
long long cnt[MAXN]; int main(){
getwn();
int n,k,a;
scanf("%d%d",&n,&k);
int mx=0;
for(int i=0; i<n; ++i){
scanf("%d",&a);
++cnt[a];
mx=max(mx,a);
}
for(len=1; len<mx*k; len<<=1); memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(B,A,sizeof(B));
--k;
int tmp=k;
while(k){
if(k&1){
for(int i=0; i<len; ++i) B[i]=mul(A[i],B[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(B,-1); P=998244353;
getwn();
memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(C,A,sizeof(C));
k=tmp;
while(k){
if(k&1){
for(int i=0; i<len; ++i) C[i]=mul(A[i],C[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(C,-1); for(int i=0; i<len; ++i){
if(B[i] || C[i]) printf("%d ",i);
}
return 0;
}
Codeforces632E Thief in a Shop(NTT + 快速幂)的更多相关文章
- CF632E: Thief in a Shop(快速幂+NTT)(存疑)
A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...
- BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1155 Solved: 532[Submit][Statu ...
- 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)
传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1,a2,...as},所有数都在[0,m−1][0,m-1][0,m− ...
- Educational Codeforces Round 9 E. Thief in a Shop NTT
E. Thief in a Shop A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...
- bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】
还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...
- BZOJ 3992 DP+NTT+快速幂
思路: 普通的DP很好想吧 f[i][j]+=f[i-1][j*s[k]] 前i个数 mod m=j 的个数 m是质数 模数是质数 这就很有趣了 那么我们就求出来原根 所有的数都取指数 搞出 ...
- codeforces632E. Thief in a Shop (dp)
A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...
- CF1096. G. Lucky Tickets(快速幂NTT)
All bus tickets in Berland have their numbers. A number consists of n digits (n is even). Only k dec ...
- bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...
随机推荐
- 利用反射手写代码实现spring AOP
前言:上一篇博客自己动手编写spring IOC源码受到了大家的热情关注,在这里博客十分感谢.特别是给博主留言建议的@玛丽的竹子等等.本篇博客我们继续,还是在原有的基础上进行改造.下面请先欣赏一下博主 ...
- Java中vector的使用详解
Vector 可实现自动增长的对象数组. java.util.vector提供了向量类(vector)以实现类似动态数组的功能.在Java语言中没有指针的概念,但如果正确灵活地使用指针又确实可以大大提 ...
- hibernate的集中持久化方法的区别
一.预备知识 在所有之前,说明一下,对于hibernate,它的对象有三种状态,transient.persistent.detached 下边是常见的翻译办法: transient:瞬态或者自由态 ...
- 蘑菇街TeamTalk编译连接过程中遇到的问题及解决方法(iOS)
今天浏览博文的时候,“蘑菇街开源的即时通讯框架,包括iOS.Android.Mac.Windows客户端和后台 Github源码下载地址:https://github.com/mogujie/Team ...
- 深入理解javascript原型和闭包(5)——instanceof
又介绍一个老朋友——instanceof. 对于值类型,你可以通过typeof判断,string/number/boolean都很清楚,但是typeof在判断到引用类型的时候,返回值只有object/ ...
- 安装 Ruby, Rails 运行环境 常见的错误
安装部署ruby on rails 的环境时并不是想的那么顺利 这个是我遇到的问题及解决的方式 参考安装博客: (1) https://ruby-china.org/wiki/install_ruby ...
- BCP导出导入大容量数据实践
前言 SQL SERVER提供多种不同的数据导出导入的工具,也可以编写SQL脚本,使用存储过程,生成所需的数据文件,甚至可以生成包含SQL语句和数据的脚本文件.各有优缺点,以适用不同的需求.下面介绍大 ...
- 10 件有关 JavaScript 让人费解的事情
JavaScript 可算是世界上最流行的编程语言,它曾被 Web 开发设计师贴上噩梦的标签,虽然真正的噩梦其实是 DOM API,这个被大量的开发与设计师随手拈来增强他们的 Web 前端的脚本语言, ...
- 值得推荐的android开源框架
1.volley 项目地址https://github.com/smanikandan14/Volley-demo (1) JSON,图像等的异步下载: (2) 网络请求的排序(scheduling) ...
- 学习 opencv---(1) opencv3.1.0 组件结构浅析
本系列是根据 浅墨大神 的opencv系列而写的,,应该大部分内容会一样..如有侵权还请告知........... 开发环境:win7 + VS2013 + opencv3.1.0 至于OpenCV组 ...