题目

Source

http://codeforces.com/contest/632/problem/E

Description

A thief made his way to a shop.

As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.

The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).

Find all the possible total costs of products the thief can nick into his knapsack.

Input

The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.

The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.

Output

Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.

Sample Input

3 2
1 2 3

5 5
1 1 1 1 1

3 3
3 5 11

Sample Output

2 3 4 5 6
5
9 11 13 15 17 19 21 25 27 33

分析

题目大概说给有n种价值各一的物品,每种数量都无限多,问取出k个物品能取出的物品价值和的所有情况。

用母函数解,价值为指数、存不存在为系数,构造多项式求k次幂即可。
这自然想到FFT+快速幂求,这样时间复杂度才够。

FFT直接求的话结果的系数最大到达10001000太爆炸了,当然也可以求一次卷积后非0指数重新赋值成1;不过我想着开头一次DFT结尾一次IDFT这样更快、更轻松点,所以用NTT了。。

我NTT模数取1004535809 WA在20,取998244353 WA在21。。看样子是系数取模后变为0了,数据叼叼的。。于是我就两个模数都取,然后4000多ms险过了。。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1048576 //const long long P=50000000001507329LL; // 190734863287 * 2 ^ 18 + 1
long long P=1004535809; // 479 * 2 ^ 21 + 1
//const long long P=998244353; // 119 * 2 ^ 23 + 1
const int G=3; long long mul(long long x,long long y){
return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
}
long long qpow(long long x,long long k,long long p){
long long ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
} long long wn[25];
void getwn(){
for(int i=1; i<=21; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
} int len;
void NTT(long long y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
long long w=1;
for(int j=i; j<i+(h>>1); ++j){
long long u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
long long inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(long long A[],long long B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
} NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
} long long A[MAXN],B[MAXN],C[MAXN];
long long cnt[MAXN]; int main(){
getwn();
int n,k,a;
scanf("%d%d",&n,&k);
int mx=0;
for(int i=0; i<n; ++i){
scanf("%d",&a);
++cnt[a];
mx=max(mx,a);
}
for(len=1; len<mx*k; len<<=1); memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(B,A,sizeof(B));
--k;
int tmp=k;
while(k){
if(k&1){
for(int i=0; i<len; ++i) B[i]=mul(A[i],B[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(B,-1); P=998244353;
getwn();
memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(C,A,sizeof(C));
k=tmp;
while(k){
if(k&1){
for(int i=0; i<len; ++i) C[i]=mul(A[i],C[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(C,-1); for(int i=0; i<len; ++i){
if(B[i] || C[i]) printf("%d ",i);
}
return 0;
}

Codeforces632E Thief in a Shop(NTT + 快速幂)的更多相关文章

  1. CF632E: Thief in a Shop(快速幂+NTT)(存疑)

    A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...

  2. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  3. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  4. Educational Codeforces Round 9 E. Thief in a Shop NTT

    E. Thief in a Shop   A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...

  5. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  6. BZOJ 3992 DP+NTT+快速幂

    思路: 普通的DP很好想吧 f[i][j]+=f[i-1][j*s[k]]  前i个数  mod m=j 的个数 m是质数  模数是质数  这就很有趣了 那么我们就求出来原根  所有的数都取指数 搞出 ...

  7. codeforces632E. Thief in a Shop (dp)

    A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...

  8. CF1096. G. Lucky Tickets(快速幂NTT)

    All bus tickets in Berland have their numbers. A number consists of n digits (n is even). Only k dec ...

  9. bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...

随机推荐

  1. zoom在css中的作用

    zoom:1 zoom:1;属性是IE浏览器的专有属性,Firefox等其它浏览器不支持.它可以设置或检索对象的缩放比例. 兼容IE6.IE7.IE8浏览器,经常会遇到一些问题,可以使用zoom:1来 ...

  2. C#+ AE 注意问题汇总(不断更新)

    1.AE的COM对象释放问题尤其是IFeatureCursor 建议用 ESRI.ArcGIS.ADF.ComReleaser.ReleaseCOMObject(pObj); 或者 int iRefs ...

  3. 面试题目——《CC150》链表

    面试题2.1:编写代码,移除未排序链表中的重复结点 进阶:如果不得使用临时缓冲区,该怎么解决? package cc150; import java.util.HashMap; import java ...

  4. Texstudio中文乱码问题

    参考 http://blog.csdn.net/lanbing510/article/details/8723619 1. 用XeLatex编译,这样生成的pdf没有乱码 2.在texstudio中E ...

  5. Tomcat基本入门知识及发布,虚拟访问及启动碰到的错误,虚拟目录,虚拟路径,各种Tomcat的配置

    Tomcat容器入门介绍 转自javaresearch.com由timgball 整理 Tomcat是一个免费的开源Web服务器,最新版本是5.5.1,支持Servlet2.4,JSP2.0,非常适合 ...

  6. rsync快速删除海量文件

    rsync --delete-before -avH --progress --stats /tmp/empty/ /var/spool/postfix/maildrop/ 由于业务侧使用时,一些脚本 ...

  7. [Nhibernate]sqlite数据库基本使用

    目录 写在前面 操作步骤 总结 写在前面 昨天有朋友问我在nhibernate中如何使用sqlite数据库,当时实在忙的不可开交,下周要去山西出差,实在没空,按我的说法使用sqlite跟使用sqlse ...

  8. linux用命令删除重复行

    文本处理时,经常要删除重复行,下面是三种方法 第一,用sort+uniq,注意,单纯uniq是不行的. sort -n test.txt | uniq 第二,用sort+awk命令,注意,单纯awk同 ...

  9. table td 文字超出显示省略号

    .autocut {      width:250px;      overflow:hidden;      white-space:nowrap;      text-overflow:ellip ...

  10. T-SQL实用查询之常用SQL语句

    删除数据库所有的表: declare @sql varchar() begin SELECT @sql='drop table ' + name FROM sysobjects WHERE (type ...