Series
一.Series
Series是一种类似于一维数组的对象,有两部分组成:
    .values:一组数据(ndarray类型)
    .index: 相关的数据索引标签
二.series的创建
    1.由列表或numpy数组创建
         Series(data=[1,2,3,4],index=['a','b','c','d'],name='haha',dtype='int64')
         index为显示索引,name为标识,dtype指定数据类型
         Serier(data=np.arange(10,60,6))
    2.由字典创建:不能再使用index,但是依然存在默认索引
三.Serier的索引和切片
  1.索引
      可以使用中括号取单个索引(此时返回的是元素类型),或者中括号里一个列表取多个索引(此时返回的是Series类型)
       (1)显式索引:a.使用index中的元素作为索引值,b.使用s.loc[],推荐:loc中放的一定是显式索引
       (2)隐式索引:a.使用整数作为索引值,b.使用s.iloc[],推荐:iloc中放的一定是隐式索引
  2.切片
      (1)显式索引切片:index和loc
      (2)隐式索引切片:整数索引和iloc
四.Series的基本操作
1.可以把Series看成一个定长的有序字典,向Series增加一行,相当于给字典增加一组键值对
    a['f'] = 99
2.可以使用s.head(),tail()分别查看前n个和后n个值
3.对Series去重
         s.unique()   Series中的去重函数 
4.Serise运算.
     (1)在运算中自动对齐不同索引的数据
         如果索引不对齐,则补NaN
     (2)a.add()加, a.sub()减 , a.mul()乘, a.div()除
5.可以使用pd.isnull(),pd.notnull或s.isnull,notnull()函数检测缺失数据
    去除空值(NaN):检测,过滤s.loc[s.notnull()]只能用loc()
五.Series属性
    1.shape
    2.size
    3.index
    4.values

数据分析之pandas01的更多相关文章

  1. 利用Python进行数据分析 基础系列随笔汇总

    一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...

  2. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  3. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  4. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  5. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  6. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  7. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  8. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  9. 利用Python进行数据分析(3) 使用IPython提高开发效率

      一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执 ...

随机推荐

  1. jquery小结收藏

    //根据id获取控件的值,如果没有数据默认赋值为0 function getDataById(id) { var data = $("#"+id).val(); if(data== ...

  2. 为python.exe或者ipython.exe添加环境变量

    在pycharm下可以把Module包添加到interpreter paths,从而实现import Module. 而若直接使用ipython,或者python.exe时,它们的环境变量并没有包含M ...

  3. 继承时,当父子类都具有相同的成员变量,默认情况下是直接调用子类的成员变量,当要调用父类的成员变量则需要使用super关键之

    package day02; public class Person { String name="fl"; }class Car{ }class Student extends ...

  4. Python 数据结构 树

    什么是树 数是一种抽象的数据类型(ADT)或是作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合,它是由n(n>1)的有限个节点和节点之间的边组成的一个有层次关系的集合. 树的组成 ...

  5. Py中axis理解【转载】

    转载:https://blog.csdn.net/yaoqi_isee/article/details/77714570 1.理解 numpy当中axis的值表示的是这个多维数组维度的下标,比如有一个 ...

  6. 动态添加class的一种方法

    外面可以写一层class再用:class 绑定新的clss进去  而且可以用三目运算.爽歪歪

  7. CentOS6.5安装sqlite3

    1.下载安装包:https://www.sqlite.org/download.html 2.解压 [root@mycentos ~]# tar xzvf sqlite-snapshot-201809 ...

  8. Please add or free up more resources then turn off safe mode manually.

    解决方案:硬盘满了,释放硬盘空间.

  9. jquery tooltip插件

    qtip2:http://qtip2.com/ bower install qtip2 // lowercase! 引入一个css和插件即可. <script type="text/j ...

  10. python regularexpress1

    //test.py 1 import re 2 3 print (re.search('www', 'www.myweb.com').span()) 4 print (re.search('com', ...