一.SHA1与MD5差异

SHA1对任意长度明文的预处理和MD5的过程是一样的,即预处理完后的明文长度是512位的整数倍,但是有一点不同,那就是SHA1的原始报文长度不能超过2的64次方,然后SHA1生成160位的报文摘要。SHA1算法简单而且紧凑,容易在计算机上实现。

表8-2-1列出了对MD5及SHA1的比较差异之处。让我们根据各项特性,简要说明其间的不同。

表8-2-1  MD5与SHA1的比较

差异处

MD5

SHA1

摘要长度

128位

160位

运算步骤数

64

80

基本逻辑函数数目

4

4

常数数目

64

4

●  安全性:SHA1所产生的摘要比MD5长32位。若两种散列函数在结构上没有任何问题的话,SHA1比MD5更安全。

●  速度:两种方法都是主要考虑以32位处理器为基础的系统结构。但SHA1的运算步骤比MD5多了16步,而且SHA1记录单元的长度比MD5多了32位。因此若是以硬件来实现SHA1,其速度大约比MD5慢了25%。

●  简易性:两种方法都是相当的简单,在实现上不需要很复杂的程序或是大量存储空间。然而总体上来讲,SHA1对每一步骤的操作描述比MD5简单。

二.SHA1哈希算法流程

对于任意长度的明文,SHA1首先对其进行分组,使得每一组的长度为512位,然后对这些明文分组反复重复处理。

对于每个明文分组的摘要生成过程如下:

(1) 将512位的明文分组划分为16个子明文分组,每个子明文分组为32位。

(2) 申请5个32位的链接变量,记为A、B、C、D、E。

(3) 16份子明文分组扩展为80份。

(4) 80份子明文分组进行4轮运算。

(5) 链接变量与初始链接变量进行求和运算。

(6) 链接变量作为下一个明文分组的输入重复进行以上操作。

(7) 最后,5个链接变量里面的数据就是SHA1摘要。

三.SHA1的分组过程

对于任意长度的明文,SHA1的明文分组过程与MD5相类似,首先需要对明文添加位数,使明文总长度为448(mod512)位。在明文后添加位的方法是第一个添加位是l,其余都是0。然后将真正明文的长度(没有添加位以前的明文长度)以64位表示,附加于前面已添加过位的明文后,此时的明文长度正好是512位的倍数。与MD5不同的是SHA1的原始报文长度不能超过2的64次方,另外SHA1的明文长度从低位开始填充。

经过添加位数处理的明文,其长度正好为512位的整数倍,然后按512位的长度进行分组(block),可以划分成L份明文分组,我们用Y0,Y1,……YL-1表示这些明文分组。对于每一个明文分组,都要重复反复的处理,这些与MD5是相同的。

对于512位的明文分组,SHA1将其再分成16份子明文分组(sub-block),每份子明文分组为32位,我们使用M[k](k= 0, 1,……15)来表示这16份子明文分组。之后还要将这16份子明文分组扩充到80份子明文分组,我们记为W[k](k= 0, 1,……79),扩充的方法如下。

W t = M t , 当0≤t≤15

W t = ( W t-3 ⊕ W t-8⊕ W t-14⊕ W t-16 ) <<< 1, 当16≤t≤79

SHA1有4轮运算,每一轮包括20个步骤(一共80步),最后产生160位摘要,这160位摘要存放在5个32位的链接变量中,分别标记为A、B、C、D、E。这5个链接变量的初始值以16进制位表示如下。

A=0x67452301

B=0xEFCDAB89

C=0x98BADCFE

D=0x10325476

E=0xC3D2E1F0

四.SHA1的4轮运算

SHA1有4轮运算,每一轮包括20个步骤,一共80步,当第1轮运算中的第1步骤开始处理时,A、B、C、D、E五个链接变量中的值先赋值到另外5个记录单元A′,B′,C′,D′,E′中。这5个值将保留,用于在第4轮的最后一个步骤完成之后与链接变量A,B,C,D,E进行求和操作。

SHA1的4轮运算,共80个步骤使用同一个操作程序,如下:

A,B,C,D,E←[(A<<<5)+ ft(B,C,D)+E+Wt+Kt],A,(B<<<30),C,D

其中 ft(B,C,D)为逻辑函数,Wt为子明文分组W[t],Kt为固定常数。这个操作程序的意义为:

●  将[(A<<<5)+ ft(B,C,D)+E+Wt+Kt]的结果赋值给链接变量A;

●  将链接变量A初始值赋值给链接变量B;

●  将链接变量B初始值循环左移30位赋值给链接变量C;

●  将链接变量C初始值赋值给链接变量D;

●  将链接变量D初始值赋值给链接变量E。

SHA1规定4轮运算的逻辑函数如表8-2-2所示。

表8-2-2  SHA1的逻辑函数

步骤

函数定义

步骤

函数定义

1

0≤t≤19

ft(B,C,D)=(B·C)V(~B·D)

3

40≤t≤59

ft(B,C,D)=(B·C)V(B·D)V(C·D)

2

20≤t≤39

ft(B,C,D)=B⊕C⊕D

4

60≤t≤79

ft(B,C,D)=B⊕C⊕D

在操作程序中需要使用固定常数Ki(i= 0,1,2,……79),Ki的取值如表8-2-3所示:

表8-2-3  SHA1的常数K取值表

步骤

函数定义

步骤

函数定义

1

0≤t≤19

Kt=5A827999

3

40≤t≤59

Kt=8F188CDC

2

20≤t≤39

Kt=6ED9EBA1

4

60≤t≤79

Kt=CA62C1D6

我们同样举一个例子来说明SHA1哈希算法中的每一步是怎样进行的,比起MD5算法,SHA1相对简单,假设W[1]=0x12345678,此时链接变量的值分别为A=0x67452301、B=0xEFCDAB89、C=0x98BADCFE、D=0x10325476、E=0xC3D2E1F0,那么第1轮第1步的运算过程如下。

(1) 将链接变量A循环左移5位,得到的结果为:0xE8A4602C。

(2) 将B,C,D经过相应的逻辑函数:

(B&C)|(~B&D)=(0xEFCDAB89&0x98BADCFE)|(~0xEFCDAB89&0x10325476)=0x98BADCFE

(3) 将第(1)步,第(2)步的结果与E,W[1],和K[1]相加得:

0xE8A4602C+0x98BADCFE+0xC3D2E1F0+0x12345678+0x5A827999=0xB1E8EF2B

(4) 将B循环左移30位得:(B<<<30)=0x7BF36AE2。

(5) 将第3步结果赋值给A,A(这里是指A的原始值)赋值给B,步骤4的结果赋值给C,C的原始值赋值给D,D的原始值赋值给E。

(6) 最后得到第1轮第1步的结果:

A = 0xB1E8EF2B

B = 0x67452301

C = 0x7BF36AE2

D = 0x98BADCFE

E = 0x10325476

按照这种方法,将80个步骤进行完毕。

第四轮最后一个步骤的A,B,C,D,E输出,将分别与记录单元A′,B′,C′,D′,E′中的数值求和运算。其结果将作为输入成为下一个512位明文分组的链接变量A,B,C,D,E,当最后一个明文分组计算完成以后,A,B,C,D,E中的数据就是最后散列函数值。

SHA1算法原理的更多相关文章

  1. SHA1算法原理【转】

    转自:https://www.cnblogs.com/scu-cjx/p/6878853.html 一.SHA1与MD5差异 SHA1对任意长度明文的预处理和MD5的过程是一样的,即预处理完后的明文长 ...

  2. SHA-1算法c语言实现

    安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signatu ...

  3. 安全体系(三)——SHA1算法详解

    本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保 ...

  4. hash算法原理及应用漫谈【加图版】

    原文:https://blog.csdn.net/Tencent_TEG/article/details/103021226 提到hash,相信大多数同学都不会陌生,之前很火现在也依旧很火的技术区块链 ...

  5. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  6. RSA算法原理

    一直以来对linux中的ssh认证.SSL.TLS这些安全认证似懂非懂的.看到阮一峰博客中对RSA算法的原理做了非常详细的解释,看完之后茅塞顿开,关于RSA的相关文章如下 RSA算法原理(一) RSA ...

  7. LruCache算法原理及实现

    LruCache算法原理及实现 LruCache算法原理 LRU为Least Recently Used的缩写,意思也就是近期最少使用算法.LruCache将LinkedHashMap的顺序设置为LR ...

  8. MySQL索引背后的数据结构及算法原理【转】

    本文来自:张洋的MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持 ...

  9. OpenGL学习进程(13)第十课:基本图形的底层实现及算法原理

        本节介绍OpenGL中绘制直线.圆.椭圆,多边形的算法原理.     (1)绘制任意方向(任意斜率)的直线: 1)中点画线法: 中点画线法的算法原理不做介绍,但这里用到最基本的画0<=k ...

随机推荐

  1. 自学Aruba6.2-控制器基本维护操作(web页面配置)

    点击返回:自学Aruba之路 自学Aruba6.2-控制器基本维护操作(web页面配置) 1 显示当前控制器版本 Dashboard---Controller中 2 升级Aruab os版本 Main ...

  2. 学习 Spring Boot:(二十九)Spring Boot Junit 单元测试

    前言 JUnit 是一个回归测试框架,被开发者用于实施对应用程序的单元测试,加快程序编制速度,同时提高编码的质量. JUnit 测试框架具有以下重要特性: 测试工具 测试套件 测试运行器 测试分类 了 ...

  3. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  4. SVN:多版本库环境的搭建

    一. 1,启动SVN sudo svnserve -d -r /home/data/svn/ 其中 -d 表示守护进程, -r 表示在后台执行 /home/data/svn/  为svn的安装目录 2 ...

  5. Ansible安装部署及常用模块详解

    Ansible命令使用 Ansible语法使用ansible <pattern_goes_here> -m <module_name> -a <arguments> ...

  6. UVALive - 7639 G - Extreme XOR Sum(思维)

    题目链接 题意 给出一个序列,相邻两两异或,生成一个新序列,再相邻两两异或,直到只剩下一个元素,问最后结果为多少.m个查询,每次都有一个待查询区间. 分析 既然有多组查询,n只是1e4,那么可以考虑预 ...

  7. 矩阵乘法np.dot()及np.multipy()区别

    1. 线性代数中矩阵乘法: np.dot() import numpy as np ​ # 2 x 3 matrix1 = np.array([[1, 2, 3], [4, 5, 6]]) ​ # 3 ...

  8. python学习笔记8-邮件模块

    我们在开发程序的时候,有时候需要开发一些自动化的任务,执行完之后,将结果自动的发送一份邮件,python发送邮件使用smtplib模块,是一个标准包,直接import导入使用即可,代码如下: impo ...

  9. luogu P2331 [SCOI2005]最大子矩阵

    传送门 \[\huge\mathit{warning}\] \[\small\text{以下说明文字高能,请心脏病,,,,,,人士谨慎观看,请未成年人在家长陪同下观看}\] 皮这一下很开心 其实是代码 ...

  10. NOI2018场外游记

    鬼晓得APIO以后我经历了些什么 Day 0 好像没什么要记的 Day 1 下午去参加开幕式 神tm大型落地柜装风扇空调下放冰块 开幕式,,,hot chocolate是真的hot(强制在线?卡常?) ...