LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges
题目传送门:LOJ #2483。
题意简述:
有 \(n\) 个数,每个数有高度 \(h_i\) 和价格 \(w_i\) 两个属性。
你可以花费 \(w_i\) 的代价移除第 \(i\) 个数(不能移除第 \(1\) 个和第 \(n\) 个数)。
这之后,没有被移除的数中,相邻两个数 \(i\) 和 \(j\) 会产生 \((h_j-h_i)^2\) 的代价。
求最小代价。
题解:
斜率优化 DP。
考虑 \(\mathrm{f}[i]\) 表示只考虑前 \(i\) 个数的最小代价,易得转移 \(\displaystyle\mathrm{f}[i]=\min_{j=1}^{i-1}(\mathrm{f}[j]+(h_i-h_j)^2+s_{i-1}-s_j)\)。
其中 \(s_n\) 表示 \(\displaystyle\sum_{i=1}^{n}w_i\)。
简化式子:\(\displaystyle\mathrm{f}[i]=h_i^2+s_{i-1}+\min_{j=1}^{i-1}(\mathrm{f}[j]+h_j^2-s_j-2h_ih_j)\)。显然可以看出斜率优化的形式。
考虑两个合法转移点 \(j\) 和 \(k\),比较 \(j\) 和 \(k\) 转移的优劣:
\]
\(x\) 坐标是 \(h_i\),\(y\) 坐标是 \(\mathrm{f}[i]+h_i^2-s_i\)。假设 \(x_j<x_k\),则决策 \(j\) 比 \(k\) 优当且仅当:
\]
即点 \((x_j,y_j)\) 和点 \((x_k,y_k)\) 之间的线段的斜率大于 \(2h_i\)。
因为 \(x_i=h_i\) 不单调,所以需要动态维护下凸壳,这可以通过使用平衡树维护解决,复杂度 \(\mathcal{O}(n\log n)\)。
也可以使用 CDQ 分治的方法解决,分治左半边后考虑按照 \(h_i\) 排序,使用单调队列在线性复杂度内得到下凸壳,以及线性更新答案。
这里的排序可以使用归并排序,不会提高复杂度,但是我为了方便直接使用了快速排序,时间复杂度 \(\mathrm{O}(n\log^2n)\)。
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int MN = 100005;
int N, p[MN], tmp[MN];
LL h[MN], w[MN], f[MN], X[MN], Y[MN];
inline double Slope(int i, int j) {
if (X[i] == X[j]) return 1e50 * (Y[j] - Y[i]);
return (double)(Y[j] - Y[i]) / (X[j] - X[i]);
}
int que[MN], l, r;
void Solve(int lb, int rb) {
if (lb == rb) { Y[lb] += f[lb]; return ; }
int mid = (lb + rb) >> 1;
Solve(lb, mid);
for (int i = lb; i <= rb; ++i) p[i] = i;
std::sort(p + lb, p + rb + 1, [](int i, int j) { return h[i] < h[j]; });
l = 1, r = 0;
for (int i = lb; i <= rb; ++i) if (p[i] <= mid) {
while (l < r && Slope(que[r - 1], que[r]) >= Slope(que[r], p[i])) --r;
que[++r] = p[i];
}
for (int i = lb; i <= rb; ++i) if (p[i] > mid) {
while (l < r && Slope(que[l], que[l + 1]) <= 2 * h[p[i]]) ++l;
f[p[i]] = std::min(f[p[i]], f[que[l]] + (h[p[i]] - h[que[l]]) * (h[p[i]] - h[que[l]]) + w[p[i] - 1] - w[que[l]]);
}
Solve(mid + 1, rb);
}
int main() {
scanf("%d", &N);
for (int i = 1; i <= N; ++i) scanf("%lld", &h[i]);
for (int i = 1; i <= N; ++i) scanf("%lld", &w[i]), w[i] += w[i - 1];
for (int i = 1; i <= N; ++i) p[i] = i, X[i] = h[i], Y[i] = h[i] * h[i] - w[i];
memset(f, 0x7f, sizeof f);
f[1] = 0, Solve(1, N);
printf("%lld\n", f[N]);
return 0;
}
LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges的更多相关文章
- loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...
- LOJ 3045: 洛谷 P5326: 「ZJOI2019」开关
题目传送门:LOJ #3045. 题意简述 略. 题解 从高斯消元出发好像需要一些集合幂级数的知识,就不从这个角度思考了. 令 \(\displaystyle \dot p = \sum_{i = 1 ...
- LOJ 3089: 洛谷 P5319: 「BJOI2019」奥术神杖
题目传送门:LOJ #3089. 题意简述: 有一个长度为 \(n\) 的母串,其中某些位置已固定,另一些位置可以任意填. 同时给定 \(m\) 个小串,第 \(i\) 个为 \(S_i\),所有位置 ...
- LOJ 3093: 洛谷 P5323: 「BJOI2019」光线
题目传送门:LOJ #3093. 题意简述: 有 \(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\). 问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的 ...
- LOJ 3043: 洛谷 P5280: 「ZJOI2019」线段树
题目传送门:LOJ #3043. 题意简述: 你需要模拟线段树的懒标记过程. 初始时有一棵什么标记都没有的 \(n\) 阶线段树. 每次修改会把当前所有的线段树复制一份,然后对于这些线段树实行一次区间 ...
- LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...
- LOJ 2249: 洛谷 P2305: 「NOI2014」购票
题目传送门:LOJ #2249. 题意简述: 有一棵以 \(1\) 号节点为根节点的带边权的树. 除了 \(1\) 号节点的所有节点上都有人需要坐车到达 \(1\) 号节点. 除了 \(1\) 号节点 ...
- loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)
题意 题目链接 Sol \[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\] 然后直接套路斜率优化,发现\(k, x\)都不单调 写个cdq就过了 ...
- @loj - 2483@「CEOI2017」Building Bridges
目录 @desription@ @solution@ @accepted code@ @details@ @another solution@ @another code@ @desription@ ...
随机推荐
- Watchdogs利用Redis实施大规模挖矿,常见数据库蠕虫如何破?
背景 2月20日17时许,阿里云安全监测到一起大规模挖矿事件,判断为Watchdogs蠕虫导致,并在第一时间进行了应急处置. 该蠕虫短时间内即造成大量Linux主机沦陷,一方面是利用Redis未授权访 ...
- 23个Python爬虫开源项目代码,包含微信、淘宝、豆瓣、知乎、微博等
今天为大家整理了23个Python爬虫项目.整理的原因是,爬虫入门简单快速,也非常适合新入门的小伙伴培养信心,所有链接指向GitHub,微信不能直接打开,老规矩,可以用电脑打开. 关注公众号「Pyth ...
- Hdoj 1064 Financial Management
题目描述 Problem Description Larry graduated this year and finally has a job. He's making a lot of money ...
- 自学工业控制网络之路1.1-工业控制系统发展历程CCS DCS FCS
返回 自学工业控制网络之路 自学工业控制网络之路1.1-工业控制系统发展历程CCS DCS FCS 工业控制系统是对诸如图像.语音信号等大数据量.高速率传输的要求,又催生了当前在商业领域风靡的以太网与 ...
- 自学Linux Shell3.2-切换目录命令cd
点击返回 自学Linux命令行与Shell脚本之路 3.2-切换目录命令cd 当登录系统并获得shell命令提示符后,你通常位于自己的主目录中. 使用pwd命令验证: pwd命令以绝对路径的方式显示用 ...
- BZOJ 5308 [ZJOI2018] Day2T2 胖 | 二分 ST表
题目链接 LOJ 2529 BZOJ 5308 题解 这么简单的题 为什么考场上我完全想不清楚 = = 对于k个关键点中的每一个关键点\(a\),二分它能一度成为哪些点的最短路起点(显然这些点在一段包 ...
- 洛谷 P2300 合并神犇 解题报告
P2300 合并神犇 题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷能力参差不 ...
- CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 好像这个题只能Dsu On Tree? 有根树点分治 统计子树过x的 ...
- PD915温度太高,通过设置BIOS降底CPU的核心电压来降温。
由于对电脑配置不是很懂,去年去配了台电脑,用的CPU是PD915,不用不知道,一用吓一跳. PD915在冬天的时候,运行起来温度大概在30多度,感觉很正常. 可是一到了夏天,温度就升到了70到80度之 ...
- Dubbo 服务治理-mock实例
转: Dubbo 服务治理-mock实例 老生住长亭 2017.02.28 10:56* 字数 514 阅读 2552评论 10喜欢 2 Dubbo的mock自己折腾的实例,配置信息有点简陋,有点粗鄙 ...