这么优秀的外国小哥哥... https://github.com/machinelearningmindset/TensorFlow-Course

tensorboard使用:https://github.com/secsilm/understanding-tensorboard

tensorflow-morvan

  • placeholder:session外定义,session里面传入具体变量
  • 在session外定义完整的结构,包括具体的操作、loss、减小loss的优化器optimizer,还有train(optimizer),然后再session里头run(train),变量要先初始化。
  • matplotlib可视化
  • 加速方法:
    • SGD:把这些数据拆分成小批小批的, 然后再分批不断放入 NN 中计算,走好多曲曲折折的路
    • momentum:放到斜坡上,一下子滑好远 m = b1 * m - Learning rate * dx; W += m
    • AdaGrad: 加大阻力,让他拐弯的时候偏离路线不能太远 v += dx^2; W += -Learning rate * dx/ √v
    • RMSProp:不完全结合上面两种方法
    • Adam: 结合上面两种方法
  • tensorboard:想在图里表示哪个变量就with tf.name_scope("name_val")这个东西的上边,最后在session里写tf.summary,FileWriter("logs/",sess.graph)
  • 交叉熵用来衡量预测值和真实值的相似程度,如果完全相同,它们的交叉熵等于零。
  • 正则化:防止过拟合,让W变大的同时cost = 预测值-真实值得平方也变大,相当于一种惩罚机制。防止过拟合还可以用dropout,每次训练在这一层随机忽略掉一些神经元和神经联结。
  • saver&loader:先定义with save,之后再使用
  • cnn: tf.nn.conv2d函数是tensoflow里面的二维的卷积函数,x是图片的所有参数,W是此卷积层的权重,然后定义步长strides=[1,1,1,1]值,strides[0]和strides[3]的两个1是默认值,中间两个1代表padding时在x方向运动一步,y方向运动一步,padding采用的方式是SAME。
  • call():在python中,函数和类都可以变成可调用对象,讲解例子。函数的调用是def 之后在外部function(input),类的调用是先定义class类 class a(),之后在外部声明初始化这个类function = a(),最后在声明之后便都可以调用类内的__call__部分print(function(input))。由此可以看出,只看最后一行的话,类和函数的外部调用是一样的。

tensorboard

with tf.name_scope('layer_name'):
with tf.variable_name('w'):
w = tf.takeplace_balabala
  • 想得到直方图啥的,就比方说loss和accuracy,就在model.py文件里定义loss和accuracy变量那先给变量起个名,然后在下边加句add_summary啥玩意就行了
self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32),name = 'accuracy')
tf.summary.scalar('accuracy',self.accuracy) # 这里可以summary.histgram总之想要什么图,就加什么图

tensorflow-learning-where-what-how的更多相关文章

  1. 基于TensorFlow的MNIST数据集的实验

    一.MNIST实验内容 MNIST的实验比较简单,可以直接通过下面的程序加上程序上的部分注释就能很好的理解了,后面在完善具体的相关的数学理论知识,先记录在这里: 代码如下所示: import tens ...

  2. TensorFlow图像预处理-函数

    更多的基本的API请参看TensorFlow中文社区:http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 下面是实验的代码,可以参 ...

  3. TensorFlow加载图片的方法

    方法一:直接使用tensorflow提供的函数image = tf.gfile.FastGFile('PATH')来读取一副图片: import matplotlib.pyplot as plt; i ...

  4. tensorflow中slim模块api介绍

    tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686 ...

  5. Introduction to TensorFlow

    Lecture note 1: Introduction to TensorFlow Why TensorFlow TensorFlow was originally created by resea ...

  6. 利用阿里云容器服务打通TensorFlow持续训练链路

    本系列将利用Docker和阿里云容器服务,帮助您上手TensorFlow的机器学习方案 第一篇:打造TensorFlow的实验环境 第二篇:轻松搭建TensorFlow Serving集群 第三篇:打 ...

  7. (转)Awsome Domain-Adaptation

    Awsome Domain-Adaptation 2018-08-06 19:27:54 This blog is copied from: https://github.com/zhaoxin94/ ...

  8. Summary on deep learning framework --- TensorFlow

     Summary on deep learning framework --- TensorFlow Updated on 2018-07-22 21:28:11 1. Check failed: s ...

  9. TensorFlow和深度学习-无需博士学位(TensorFlow and deep learning without a PhD)

    1. 概述 原文地址: TensorFlow and deep learning,without a PhD Learn TensorFlow and deep learning, without a ...

  10. 第25月第5天 Hands-on Machine Learning with Scikit-Learn and TensorFlow

    1.apachecn视频(机器学习实战) https://github.com/apachecn/AiLearning https://space.bilibili.com/97678687/#/ch ...

随机推荐

  1. MySQL事务(三)

    一.事务(Innodb锁)的隔离级别概述 并发事务带来的问题: 更新丢失(lost update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会 ...

  2. Northcott Game HDU - 1730

    Tom和Jerry正在玩一种Northcott游戏,可是Tom老是输,因此他怀疑这个游戏是不是有某种必胜策略,郁闷的Tom现在向你求救了,你能帮帮他么? 游戏规则是这样的: 如图所示,游戏在一个n行m ...

  3. 堆排序 GPLT L2-012 关于堆的判断

    题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805064676261888 分析:这题看起来非常唬人,其实不难 ...

  4. 伪分布式&&完全分布式&&高可用(zookeeper)的配置文件内容

    [伪分布式] ①[core-site.xml] <configuration> <property> <name>fs.defaultFS</name> ...

  5. IntelliJ IDEA下载及安装,破解

    IntelliJ IDEA下载及安装,破解 百度百科:IDEA 全称IntelliJ IDEA,是java语言开发的集成环境,IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助 ...

  6. Boost.PropertyTree读取ini文件(Linux环境)

    昨天因为需要读取配置文件略略伤神.网上很多例子但是我用都会报错,很多人把Boost.PropertyTree的函数写很麻烦的包所以报错我也不知道什么问题,所以今天整理下. 头上附上官网链接:Boost ...

  7. ActiveMQ 处理不同类型的消息

    ActiveMQ 中的消息都继承自 org.apache.activemq.command.BaseCommand 类. broker 处理消息的调用栈如下: TransportConnection ...

  8. JS时钟--星期 年 月 日 时 分

    var clock = function(clockName){ var mydate = new Date(); var hours = mydate.getHours(); var minutes ...

  9. CentOS中/英文环境切换教程(CentOS6.8)

    一.前言 对于不习惯英文的人可能想将系统由英文转成中文:而对于考虑客户端如果没正确配置,中文目录可能显示为乱码的人则可能宁愿将系统由中文转成英文. 中文切换为英文,实际就是将LANG的值由zh_CN- ...

  10. python settings :RROR 1130: Host 'XXXXXX' is not allowed to connect to this MySQL server

    pymysql.err.InternalError: (1130, u"Host '127.0.0.1' is not allowed to connect to this MySQL se ...