tensorflow-learning-where-what-how
这么优秀的外国小哥哥... https://github.com/machinelearningmindset/TensorFlow-Course
tensorboard使用:https://github.com/secsilm/understanding-tensorboard
tensorflow-morvan
- placeholder:session外定义,session里面传入具体变量
- 在session外定义完整的结构,包括具体的操作、loss、减小loss的优化器optimizer,还有train(optimizer),然后再session里头run(train),变量要先初始化。
- matplotlib可视化
- 加速方法:
- SGD:把这些数据拆分成小批小批的, 然后再分批不断放入 NN 中计算,走好多曲曲折折的路
- momentum:放到斜坡上,一下子滑好远 m = b1 * m - Learning rate * dx; W += m
- AdaGrad: 加大阻力,让他拐弯的时候偏离路线不能太远 v += dx^2; W += -Learning rate * dx/ √v
- RMSProp:不完全结合上面两种方法
- Adam: 结合上面两种方法
- tensorboard:想在图里表示哪个变量就with tf.name_scope("name_val")这个东西的上边,最后在session里写tf.summary,FileWriter("logs/",sess.graph)
- 交叉熵用来衡量预测值和真实值的相似程度,如果完全相同,它们的交叉熵等于零。
- 正则化:防止过拟合,让W变大的同时cost = 预测值-真实值得平方也变大,相当于一种惩罚机制。防止过拟合还可以用dropout,每次训练在这一层随机忽略掉一些神经元和神经联结。
- saver&loader:先定义with save,之后再使用
- cnn: tf.nn.conv2d函数是tensoflow里面的二维的卷积函数,x是图片的所有参数,W是此卷积层的权重,然后定义步长strides=[1,1,1,1]值,strides[0]和strides[3]的两个1是默认值,中间两个1代表padding时在x方向运动一步,y方向运动一步,padding采用的方式是SAME。
- call():在python中,函数和类都可以变成可调用对象,讲解例子。函数的调用是def 之后在外部function(input),类的调用是先定义class类 class a(),之后在外部声明初始化这个类function = a(),最后在声明之后便都可以调用类内的__call__部分print(function(input))。由此可以看出,只看最后一行的话,类和函数的外部调用是一样的。
tensorboard
- 莫烦de, 这个可以同时参照老版的和他发布的那个2017年新版的tf,可以get到图层和变量的概念
- 定义那个graph里都有什么变量就用with tf.name_scope('name') or tf.variable_balabala, 就比方说你想要显示w和b,还有大的这个是什么层,就是画图层,大圈套小圈
with tf.name_scope('layer_name'):
with tf.variable_name('w'):
w = tf.takeplace_balabala
- 想得到直方图啥的,就比方说loss和accuracy,就在model.py文件里定义loss和accuracy变量那先给变量起个名,然后在下边加句add_summary啥玩意就行了
self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32),name = 'accuracy')
tf.summary.scalar('accuracy',self.accuracy) # 这里可以summary.histgram总之想要什么图,就加什么图
tensorflow-learning-where-what-how的更多相关文章
- 基于TensorFlow的MNIST数据集的实验
一.MNIST实验内容 MNIST的实验比较简单,可以直接通过下面的程序加上程序上的部分注释就能很好的理解了,后面在完善具体的相关的数学理论知识,先记录在这里: 代码如下所示: import tens ...
- TensorFlow图像预处理-函数
更多的基本的API请参看TensorFlow中文社区:http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 下面是实验的代码,可以参 ...
- TensorFlow加载图片的方法
方法一:直接使用tensorflow提供的函数image = tf.gfile.FastGFile('PATH')来读取一副图片: import matplotlib.pyplot as plt; i ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
- Introduction to TensorFlow
Lecture note 1: Introduction to TensorFlow Why TensorFlow TensorFlow was originally created by resea ...
- 利用阿里云容器服务打通TensorFlow持续训练链路
本系列将利用Docker和阿里云容器服务,帮助您上手TensorFlow的机器学习方案 第一篇:打造TensorFlow的实验环境 第二篇:轻松搭建TensorFlow Serving集群 第三篇:打 ...
- (转)Awsome Domain-Adaptation
Awsome Domain-Adaptation 2018-08-06 19:27:54 This blog is copied from: https://github.com/zhaoxin94/ ...
- Summary on deep learning framework --- TensorFlow
Summary on deep learning framework --- TensorFlow Updated on 2018-07-22 21:28:11 1. Check failed: s ...
- TensorFlow和深度学习-无需博士学位(TensorFlow and deep learning without a PhD)
1. 概述 原文地址: TensorFlow and deep learning,without a PhD Learn TensorFlow and deep learning, without a ...
- 第25月第5天 Hands-on Machine Learning with Scikit-Learn and TensorFlow
1.apachecn视频(机器学习实战) https://github.com/apachecn/AiLearning https://space.bilibili.com/97678687/#/ch ...
随机推荐
- android -------- Android Studio调试运行时ADB not responding
最近有我朋友问我一个android studio的调试运行问题,我记得以前也是遇到过得,所以 来写一下 ADB not responding.If you'd like to retry, th ...
- dp练习2
1, CF 808G Anthem of Berland 2, CF 741B Arpa's weak amphitheater and Mehrdad's valuable Hoses
- 5月13 jquery的一些应用
首先对于JavaScript的一些复习:操作内容,操作属性,操作样式 <title>无标题文档</title> <style> #aa { width:200px; ...
- dingyou-dingtalk-mobile在安卓系统上无法显示问题
dingyou-dingtalk-mobile项目在NowaUI上下载下来直接编译部署后在安卓版钉钉上会出现无法正常显示的问题,安卓真机调试在谷歌上显示错误如下:1.undefined is not ...
- 解决 TCP_socket 粘包问题
所谓粘包问题主要还是C/S两端数据传输时 因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的 根本原因:粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多 ...
- PowerShell使用教程
一.说明 1.1 背景说明 个人对PowerShell也不是很熟悉,开始的时候就突然看到开始菜单中多了个叫PowerShell的文件夹,后来一点就看到某个教程视频说PowerShell很厉害但也没怎么 ...
- js如何将选中图片文件转换成Base64字符串?
如何将input type="file"选中的文件转换成Base64的字符串呢? 1.首先了解一下为什么要把图片文件转换成Base64的字符串 在常规的web开发过程中,大部分上传 ...
- 【Jmeter基础知识】Jmeter响应断言和断言结果
一.Jmeter创建一个响应断言 1.步骤:添加--断言--响应断,进入响应断言页面 2.断言内容:可以采用直接去搜索某些文本信息,或者可以去断言某个变量,如图 二.Jmeter创建一个断言结果 1. ...
- python 自然语言处理(四)____词典资源
词典或者词典资源是一个词和/或短语及其相关信息的集合,例如:词性和词意定义等相关信息.词典资源附属于文本,而且通常在文本的基础上创建和丰富.下面列举几种nltk中的词典资源. 1. 词汇列表语料库 n ...
- do_bootrk
1. LMB (logical memory blocks) lmb为uboot下的一种内存管理机制,用于管理镜像的内存.lmb所记录的内存信息最终会传递给kernel.在/include/lmb.h ...