【问题描述】

给定一个无回路的无向图(即树),设计一个动态规划算法,求出该图的最大独立集,并输出该集合中的各个顶点值。

 package org.xiu68.exp.exp7;

 import java.util.ArrayList;

 public class Exp7_1 {

     public static void main(String[] args) {
// TODO Auto-generated method stub
//运行结果
/*
树的最大独立集为: 4
顶点值为: 4 6 2 3
树的最小点覆盖为: 2
顶点值为: 5 1
*/
//由结果可知 最大独立集与最小点覆盖集合互为补集
ArrayList<Integer> vexs=new ArrayList<>();
for(int i=1;i<=6;i++)
vexs.add(i);
//构造一个无向无环图
int[][] edges=new int[][]{
{0,1,1,0,0,0},
{1,0,0,0,1,0},
{1,0,0,0,0,0},
{0,0,0,0,1,0},
{0,1,0,1,0,1},
{0,0,0,0,1,0}
};
MGraph<Integer> m=new MGraph<Integer>(6, 6, edges, vexs);
m.maxIndependentSet();
System.out.println();
m.minCoverSet(); }
} //邻接矩阵表示图、无向无环图
class MGraph<T>{
public int vexNum; //顶点数量
public int edgeNum; //边数量
public int[][] edges; //邻接矩阵
public ArrayList<T> vexs; //顶点表 public int[][] maxDep; //最大独立集
public ArrayList<Integer> set; //最大独立集顶点序号 public int[][] minCover; //最小点覆盖
public ArrayList<Integer> minSet; //最小点覆盖顶点序号 public MGraph(int vexNum, int edgeNum, int[][] edges, ArrayList<T> vexs) {
this.vexNum = vexNum;
this.edgeNum = edgeNum;
this.edges = edges;
this.vexs = vexs; maxDep=new int[vexNum][2];
set=new ArrayList<>(); minCover=new int[vexNum][2];
minSet=new ArrayList<>();
} //最大独立集
public void maxIndependentSet(){
independentSet(0, 0); if(maxDep[0][0]>maxDep[0][1])
System.out.println("树的最大独立集为: "+maxDep[0][0]);
else
System.out.println("树的最大独立集为: "+maxDep[0][1]); System.out.print("顶点值为: ");
for(int i=0;i<set.size();i++)
System.out.print(vexs.get(set.get(i))+" ");
}
//求以child为根的树的最大独立集
//child:当前正在处理的结点
//parent:child的父结点
private void independentSet(int child,int parent){
maxDep[child][0]=1; //当前结点放入独立集
maxDep[child][1]=0; //当前结点不放入独立集 for(int i=0;i<vexNum;i++){
if(edges[child][i]==0 || i==parent) //如果顶点间不存在边或尾结点为父结点
continue;
independentSet(i, child); //因为child加入了最大独立集,所以子结点不加入最大独立集
//以child为根的树的最大独立集的规模为 ( 1+ child的孙子结点的最大独立集的规模 )
maxDep[child][0]+=maxDep[i][1]; if(maxDep[i][0]>maxDep[i][1])
maxDep[child][1]+=maxDep[i][0]; //加入子结点
else
maxDep[child][1]+=maxDep[i][1]; //不加入子结点
} if(maxDep[child][0]>maxDep[child][1]) //比较加入child与不加入child的独立集大小,取较大者为结果
set.add(child);
} //*********************************************************** //最小点覆盖
public void minCoverSet(){
coverSet(0,0);
if(minCover[0][0]<minCover[0][1])
System.out.println("树的最小点覆盖为: "+minCover[0][0]);
else
System.out.println("树的最小点覆盖为: "+minCover[0][1]); System.out.print("顶点值为: ");
for(int i=0;i<minSet.size();i++){
System.out.print(vexs.get(minSet.get(i))+" ");
}
}
//求以child为根的树的最小点覆盖集合
//child:当前正在处理的结点
//parent:child的父结点
private void coverSet(int child,int parent){
minCover[child][0]=1; //child放入最小点覆盖集合
minCover[child][1]=0; //child不放入最小点覆盖集合 for(int i=0;i<vexNum;i++){
if(edges[child][i]==0 || i==parent) //如果顶点间不存在边或尾结点为父结点
continue; coverSet(i,child); //如果子结点i放入集合结果更小则把i放入集合
if(minCover[i][0]<minCover[i][1])
minCover[child][0]+=minCover[i][0]; //子结点i放入集合
else
minCover[child][0]+=minCover[i][1]; //子结点i不放入集合 //若child不放入最小点覆盖集合,则其所有子结点都要放入最小点覆盖集合
minCover[child][1]+=minCover[i][0]; if(minCover[child][0]<minCover[child][1]) //取最小值作为结果
minSet.add(child);
}
}
}

Expm 7_1树中的最大独立集问题的更多相关文章

  1. UVA - 1220 Party at Hali-Bula 树的最大独立集

    题意:  给定n个人,存在上下级关系,每个人只有一个上级,求最大独立集.并判断最大独立集是否唯一 思路:d[i][0]表示以i为根的子树中,不选择第i个节点的最大独立集,f[i][0]表示以i为根的子 ...

  2. UVa 1220 Hali-Bula的晚会(树的最大独立集)

    https://vjudge.net/problem/UVA-1220 题意: 公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司.要求选尽量多的人,但不能同时选择一个人和他的直 ...

  3. [LeetCode] Delete Node in a BST 删除二叉搜索树中的节点

    Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...

  4. [LeetCode] Inorder Successor in BST 二叉搜索树中的中序后继节点

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. No ...

  5. [LeetCode] Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  6. eclipse 中过滤空包,目录树中不显示。

    1.导入maven工程,目录树中显示空包. 在Package Explorer的左上角,有个倒三角形,点开,有Fileters 选项,点开, Filters 中,勾上 Empty packages.即 ...

  7. poj 3692 Kindergarten (最大独立集)

    Kindergarten Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4903   Accepted: 2387 Desc ...

  8. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  9. loj 1201(最大独立集)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26913 思路:水题一枚,就是求最大独立集.最大独立集=顶点数-最大 ...

随机推荐

  1. codeblocks 输入、输出文件的位置

    codeblocks已经自动地规定了文件位置 另外:有些数据(数据量大)直接复制到exe中执行,会神奇地发生错误,估计是限制了一次粘贴到控制台的数据量.

  2. vcf文件(call variants得来的)怎么看变异是纯合还是杂合的

    如下图片所示: 对于位置为48245131的allele来说,REF为A,ALT为C 想确定变异到底是纯合还是杂合,即两条染色体是否同时发生了变异,则看GT,GT对应的数值为0/1,说明该变异为杂合: ...

  3. struct字节对齐原则

    原则1:windows下,k字节基本类型以k字节倍数偏移量对齐,自定义结构体则以结构体中最高p字节基本类型的p字节倍数偏移量对齐,Linux下则以2或4字节对齐; 原则2:整体对齐原则,例如数组结构体 ...

  4. poj 1904(强连通分量+完美匹配)

    传送门:Problem 1904 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:http://www.cnblogs.co ...

  5. MySQL中双NDBD节点Cluster快速配置

    是MySQL适合于分布式计算环境的高实用.高冗余版本.它采用了NDB Cluster 存储引擎,允许在1个 Cluster 中运行多个MySQL服务器.在MyQL 5.0及以上的二进制版本中.以及与最 ...

  6. SQL经典问题:找出连续日期及连续的天数

    create table tmptable(rq datetime) go insert tmptable values('2010.1.1') insert tmptable values('201 ...

  7. 原生js轮播图实现

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. java中import机制(指定import和import *的区别)

    转自:https://www.cnblogs.com/dtts/p/4692480.html java中有两种包的导入机制,总结如下: 单类型导入(single-type-import),       ...

  9. A + B,末k位不相同

    题目描述 读入两个小于10000的正整数A和B,计算A+B.需要注意的是:如果A和B的末尾K(不超过8)位数字相同,请直接输出-1. 输入描述: 测试输入包含若干测试用例,每个测试用例占一行,格式为& ...

  10. 插入排序算法的JAVA实现

    1,对元素进行排列时,元素之间需要进行比较,因此需要实现Comparable<T>接口.即,<T extends Comparable<T>>. 更进一步,如果允许 ...