【问题描述】

给定一个无回路的无向图(即树),设计一个动态规划算法,求出该图的最大独立集,并输出该集合中的各个顶点值。

 package org.xiu68.exp.exp7;

 import java.util.ArrayList;

 public class Exp7_1 {

     public static void main(String[] args) {
// TODO Auto-generated method stub
//运行结果
/*
树的最大独立集为: 4
顶点值为: 4 6 2 3
树的最小点覆盖为: 2
顶点值为: 5 1
*/
//由结果可知 最大独立集与最小点覆盖集合互为补集
ArrayList<Integer> vexs=new ArrayList<>();
for(int i=1;i<=6;i++)
vexs.add(i);
//构造一个无向无环图
int[][] edges=new int[][]{
{0,1,1,0,0,0},
{1,0,0,0,1,0},
{1,0,0,0,0,0},
{0,0,0,0,1,0},
{0,1,0,1,0,1},
{0,0,0,0,1,0}
};
MGraph<Integer> m=new MGraph<Integer>(6, 6, edges, vexs);
m.maxIndependentSet();
System.out.println();
m.minCoverSet(); }
} //邻接矩阵表示图、无向无环图
class MGraph<T>{
public int vexNum; //顶点数量
public int edgeNum; //边数量
public int[][] edges; //邻接矩阵
public ArrayList<T> vexs; //顶点表 public int[][] maxDep; //最大独立集
public ArrayList<Integer> set; //最大独立集顶点序号 public int[][] minCover; //最小点覆盖
public ArrayList<Integer> minSet; //最小点覆盖顶点序号 public MGraph(int vexNum, int edgeNum, int[][] edges, ArrayList<T> vexs) {
this.vexNum = vexNum;
this.edgeNum = edgeNum;
this.edges = edges;
this.vexs = vexs; maxDep=new int[vexNum][2];
set=new ArrayList<>(); minCover=new int[vexNum][2];
minSet=new ArrayList<>();
} //最大独立集
public void maxIndependentSet(){
independentSet(0, 0); if(maxDep[0][0]>maxDep[0][1])
System.out.println("树的最大独立集为: "+maxDep[0][0]);
else
System.out.println("树的最大独立集为: "+maxDep[0][1]); System.out.print("顶点值为: ");
for(int i=0;i<set.size();i++)
System.out.print(vexs.get(set.get(i))+" ");
}
//求以child为根的树的最大独立集
//child:当前正在处理的结点
//parent:child的父结点
private void independentSet(int child,int parent){
maxDep[child][0]=1; //当前结点放入独立集
maxDep[child][1]=0; //当前结点不放入独立集 for(int i=0;i<vexNum;i++){
if(edges[child][i]==0 || i==parent) //如果顶点间不存在边或尾结点为父结点
continue;
independentSet(i, child); //因为child加入了最大独立集,所以子结点不加入最大独立集
//以child为根的树的最大独立集的规模为 ( 1+ child的孙子结点的最大独立集的规模 )
maxDep[child][0]+=maxDep[i][1]; if(maxDep[i][0]>maxDep[i][1])
maxDep[child][1]+=maxDep[i][0]; //加入子结点
else
maxDep[child][1]+=maxDep[i][1]; //不加入子结点
} if(maxDep[child][0]>maxDep[child][1]) //比较加入child与不加入child的独立集大小,取较大者为结果
set.add(child);
} //*********************************************************** //最小点覆盖
public void minCoverSet(){
coverSet(0,0);
if(minCover[0][0]<minCover[0][1])
System.out.println("树的最小点覆盖为: "+minCover[0][0]);
else
System.out.println("树的最小点覆盖为: "+minCover[0][1]); System.out.print("顶点值为: ");
for(int i=0;i<minSet.size();i++){
System.out.print(vexs.get(minSet.get(i))+" ");
}
}
//求以child为根的树的最小点覆盖集合
//child:当前正在处理的结点
//parent:child的父结点
private void coverSet(int child,int parent){
minCover[child][0]=1; //child放入最小点覆盖集合
minCover[child][1]=0; //child不放入最小点覆盖集合 for(int i=0;i<vexNum;i++){
if(edges[child][i]==0 || i==parent) //如果顶点间不存在边或尾结点为父结点
continue; coverSet(i,child); //如果子结点i放入集合结果更小则把i放入集合
if(minCover[i][0]<minCover[i][1])
minCover[child][0]+=minCover[i][0]; //子结点i放入集合
else
minCover[child][0]+=minCover[i][1]; //子结点i不放入集合 //若child不放入最小点覆盖集合,则其所有子结点都要放入最小点覆盖集合
minCover[child][1]+=minCover[i][0]; if(minCover[child][0]<minCover[child][1]) //取最小值作为结果
minSet.add(child);
}
}
}

Expm 7_1树中的最大独立集问题的更多相关文章

  1. UVA - 1220 Party at Hali-Bula 树的最大独立集

    题意:  给定n个人,存在上下级关系,每个人只有一个上级,求最大独立集.并判断最大独立集是否唯一 思路:d[i][0]表示以i为根的子树中,不选择第i个节点的最大独立集,f[i][0]表示以i为根的子 ...

  2. UVa 1220 Hali-Bula的晚会(树的最大独立集)

    https://vjudge.net/problem/UVA-1220 题意: 公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司.要求选尽量多的人,但不能同时选择一个人和他的直 ...

  3. [LeetCode] Delete Node in a BST 删除二叉搜索树中的节点

    Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...

  4. [LeetCode] Inorder Successor in BST 二叉搜索树中的中序后继节点

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. No ...

  5. [LeetCode] Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  6. eclipse 中过滤空包,目录树中不显示。

    1.导入maven工程,目录树中显示空包. 在Package Explorer的左上角,有个倒三角形,点开,有Fileters 选项,点开, Filters 中,勾上 Empty packages.即 ...

  7. poj 3692 Kindergarten (最大独立集)

    Kindergarten Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4903   Accepted: 2387 Desc ...

  8. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  9. loj 1201(最大独立集)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26913 思路:水题一枚,就是求最大独立集.最大独立集=顶点数-最大 ...

随机推荐

  1. [luoguU42591][小T的面试题]

    luoguU42591 题意: n个不超过n的正整数中,其中有一个数出现了两次,其余的数都只出现了一次, 求这个出现两次的数. 思路: 这个题的亮点在于内存限制1MB.明显不能再用数组储存了,肯定是用 ...

  2. 初探ant-design(web版本)

    第一步安装ant-design插件 第二步查看项目目录 第三步运行项目 我们查看index.js文件 这个其实是Datepicker组件的展示效果 第四步我们按照下面的代码代替Index.js中的内容 ...

  3. mysql 日志清理

    1.查看binlog日志 show binary logs; 2.删除某个日志文件之前的所有日志文件purge binary logs to 'bin.000106'; 3.再看show binary ...

  4. H5 手机拨打电话与转到邮箱的标签属性

    <a href="tel:电话号码"></a> <a href-"mailto:邮箱"></a> 说明:第一个标 ...

  5. RHCE就该这么搞01

    RHCE就该这么搞01 学习之初:快速了解Linux Boot From Hard DiskInstallationUpgradeMore---------------Boot OpsionsStar ...

  6. shiro中自定义realm实现md5散列算法加密的模拟

    shiro中自定义realm实现md5散列算法加密的模拟.首先:我这里是做了一下shiro 自定义realm散列模拟,并没有真正链接数据库,因为那样东西就更多了,相信学到shiro的人对连接数据库的一 ...

  7. Python基础【day02】:元组和购物车练习的知识点

    一.元组 元组其实跟列表差不多,也是存一组数,只不是它一旦创建,便不能再修改,所以又叫只读列表 用途:一般情况下用于自己写的程序能存下数据,但是又希望这些数据不会被改变,比如:数据库连接信息等 1.元 ...

  8. 如何解决win7系统无法运行cmd命令提示符

    如何解决win7系统无法运行cmd命令提示符   CMD命令可以帮助我们很快的执行所需要的程序命令,可以查询系统中很多的信息和解决系统很多的故障,对我们来说非常方便,但是最近有用户反馈自己win7电脑 ...

  9. loadrunner controller如何执行测试

    使用Virtual User Generator编写需要测试的脚本   打开controller,在左侧的available scripts里选择需要测试的脚本添加(Add)到scripts in s ...

  10. java.net.URL 模拟用户登录网页并维持session【转】

    java.net.URL 模拟用户登录网页并维持session 半成品,并非完全有用 import java.io.BufferedReader; import java.io.InputStream ...