Spark RDD Action 简单用例(一)
collectAsMap(): Map[K, V]
返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个。
/**
* Return the key-value pairs in this RDD to the master as a Map.
*
* Warning: this doesn't return a multimap (so if you have multiple values to the same key, only
* one value per key is preserved in the map returned)
*
* @note this method should only be used if the resulting data is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collectAsMap(): Map[K, V]
scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> rdd.collectAsMap
res0: scala.collection.Map[String,Int] = Map(A -> 3, C -> 3, B -> 2)
countByKey(): Map[K, Long]
计算有多少个不同的key.
/**
* Count the number of elements for each key, collecting the results to a local Map.
*
* Note that this method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which
* returns an RDD[T, Long] instead of a map.
*/
def countByKey(): Map[K, Long] = self.withScope {
self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
}
scala> val rdd = sc.parallelize(List((1,1),(1,2),(1,3),(2,1),(2,2),(2,3)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[5] at parallelize at <console>:24 scala> rdd.countByKey
res5: scala.collection.Map[Int,Long] = Map(1 -> 3, 2 -> 3)
countByValue()
计算不同的value个数,该函数首先通过map将每个元素转成(value,null)的key-value(value为null)对,
然后调用countByKey进行统计。 /**
* Return the count of each unique value in this RDD as a local map of (value, count) pairs.
*
* Note that this method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.map(x => (x, 1L)).reduceByKey(_ + _), which
* returns an RDD[T, Long] instead of a map.
*/
def countByValue()(implicit ord: Ordering[T] = null): Map[T, Long] = withScope {
map(value => (value, null)).countByKey()
}
scala> val rdd = sc.parallelize(List(1,2,3,4,5,4,4,3,2,1))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[18] at parallelize at <console>:24 scala> rdd.countByValue
res12: scala.collection.Map[Int,Long] = Map(5 -> 1, 1 -> 2, 2 -> 2, 3 -> 2, 4 -> 3)
lookup(key: K)
根据key值搜索所有的value.
/**
* Return the list of values in the RDD for key `key`. This operation is done efficiently if the
* RDD has a known partitioner by only searching the partition that the key maps to.
*/
def lookup(key: K): Seq[V]
scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24 scala> rdd.lookup("A")
res2: Seq[Int] = WrappedArray(1, 2, 3)
checkpoint()
将RDD数据根据设置的checkpoint目录保存至硬盘中。
/**
* Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
* directory set with `SparkContext#setCheckpointDir` and all references to its parent
* RDDs will be removed. This function must be called before any job has been
* executed on this RDD. It is strongly recommended that this RDD is persisted in
* memory, otherwise saving it on a file will require recomputation.
*/
def checkpoint(): Unit
/*通过linux命令创建/home/check目录后,设置checkpoint directory*/
scala> sc.setCheckpointDir("/home/check") scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[6] at parallelize at <console>:24 /*
*执行下面的代码会在/home/check目录下创建一个空的目录/home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49
*/
scala> rdd.checkpoint /*
执行count后会在上述目录下创建一个rdd目录,rdd目录下是数据文件
*/
scala> rdd.count
res5: Long = 6
[root@localhost ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/
total
drwxr-xr-x. root root Sep : .
drwxr-xr-x. root root Sep : ..
[root@localhost ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/
total
drwxr-xr-x. root root Sep : .
drwxr-xr-x. root root Sep : ..
drwxr-xr-x. root root Sep : rdd-
[root@localhost ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/rdd-/
total
drwxr-xr-x. root root Sep : .
drwxr-xr-x. root root Sep : ..
-rw-r--r--. root root Sep : part-
-rw-r--r--. root root Sep : .part-.crc
-rw-r--r--. root root Sep : part-
-rw-r--r--. root root Sep : .part-.crc
-rw-r--r--. root root Sep : part-
-rw-r--r--. root root Sep : .part-.crc
collect()
返回RDD所有元素的数组。
/**
* Return an array that contains all of the elements in this RDD.
*
* @note this method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collect(): Array[T]
scala> val rdd = sc.parallelize(1 to 10,3)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:24 scala> rdd.collect
res8: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
toLocalIterator: Iterator[T]
返回一个包含所有算的迭代器。
/**
* Return an iterator that contains all of the elements in this RDD.
*
* The iterator will consume as much memory as the largest partition in this RDD.
*
* Note: this results in multiple Spark jobs, and if the input RDD is the result
* of a wide transformation (e.g. join with different partitioners), to avoid
* recomputing the input RDD should be cached first.
*/
def toLocalIterator: Iterator[T]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> val it = rdd.toLocalIterator
it: Iterator[Int] = non-empty iterator scala> while(it.hasNext){
| println(it.next)
| }
1
2
3
4
5
6
7
8
9
10
count()
返回RDD中元素的数量。
/**
* Return the number of elements in the RDD.
*/
def count(): Long
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> rdd.count
res1: Long = 10
dependencies
返回该RDD的依赖RDD的地址。
/**
* Get the list of dependencies of this RDD, taking into account whether the
* RDD is checkpointed or not.
*/
final def dependencies: Seq[Dependency[_]]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> val rdd1 = rdd.filter(_>3)
rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at filter at <console>:26 scala> val rdd2 = rdd1.filter(_<6)
rdd2: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:28 scala> rdd2.dependencies
res2: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.OneToOneDependency@21c882b5)
partitions
以数组形式返回RDD各分区地址
/**
* Get the array of partitions of this RDD, taking into account whether the
* RDD is checkpointed or not.
*/
final def partitions: Array[Partition]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24 scala> rdd.partitions
res4: Array[org.apache.spark.Partition] = Array(org.apache.spark.rdd.ParallelCollectionPartition@70c, org.apache.spark.rdd.ParallelCollectionPartition@70d)
first()
返回RDD的第一个元素。
/**
* Return the first element in this RDD.
*/
def first(): T
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
scala> rdd.first
res5: Int = 1
fold(zeroValue: T)(op: (T, T) => T)
使用zeroValue和每个分区的元素进行聚合运算,最后各分区结果和zeroValue再进行一次聚合运算。
/**
* @param zeroValue the initial value for the accumulated result of each partition for the `op`
* operator, and also the initial value for the combine results from different
* partitions for the `op` operator - this will typically be the neutral
* element (e.g. `Nil` for list concatenation or `0` for summation)
* @param op an operator used to both accumulate results within a partition and combine results
* from different partitions
*/
def fold(zeroValue: T)(op: (T, T) => T): T
scala> val rdd = sc.parallelize(1 to 5)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at <console>:24 scala> rdd.fold(10)(_+_)
res13: Int = 35
Spark RDD Action 简单用例(一)的更多相关文章
- Spark RDD Action 简单用例(二)
foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this ...
- Spark RDD Transformation 简单用例(三)
cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ON ...
- Spark RDD Transformation 简单用例(二)
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTa ...
- Spark RDD Transformation 简单用例(一)
map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: C ...
- spark RDD transformation与action函数整理
1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...
- Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...
- Apache Spark RDD(Resilient Distributed Datasets)论文
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...
- Spark RDD深度解析-RDD计算流程
Spark RDD深度解析-RDD计算流程 摘要 RDD(Resilient Distributed Datasets)是Spark的核心数据结构,所有数据计算操作均基于该结构进行,包括Spark ...
- spark RDD 常见操作
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...
随机推荐
- webservice-整理
webservice-整理 RPC与WebService的区别:https://blog.csdn.net/defonds/article/details/71641634 http://www.di ...
- CentOS 安装 Hadoop 手记
Download & Install download hadoop from http://hadoop.apache.org/releases.html#Download downlo ...
- ubuntu 安装SSH并设置免密码登录
cd ~/.ssh/ # 若没有该目录,请先执行一次ssh localhost ssh-keygen -t rsa # 会有提示,都按回车就可以 cat ./id_rsa.pub >> . ...
- 使用yocs_cmd_vel_mux进行机器人速度控制切换
cmd_vel_mux包从名字就可以推测出它的用途,即进行速度的选择(In electronics, a multiplexer or mux is a device that selects one ...
- linux下使用mingw编译NSIS-3.03
简述 最近在研究使用NSIS做安装包,语法不算复杂,插件也很多,中文资料也不少,还挺好用的.先后用NSIS做出了安装和卸载需要输入密码,通过自定义页面实现安装时候选择多个目录.安装的时候输入配置文件信 ...
- 【LeetCode】239. Sliding Window Maximum
Sliding Window Maximum Given an array nums, there is a sliding window of size k which is moving fr ...
- 从public void onPreviewFrame(byte[] data, Camera arg1)拿到Bitmap(收集)
private PreviewCallback pc = new PreviewCallback(){ public void onPreviewFrame(byte[] data, Camera a ...
- CorelCAD for Mac(绘图设计软件)破解版安装
1.软件简介 CorelCAD 是 macOS 系统上的 CAD 绘图工具,为我们提供了获取本地 DWG 格式的高性能 CAD 设计解决方案.打开.处理和保存 .DWG 文件,实现轻松协作.借助 ...
- 在 OC 中调用 Swift 代码
1.在 Objective-C 项目中使用 Swift 代码 1)在 OC 项目中创建 .Swift 文件,文件中的格式为其本有的格式. 2)Xcode 提示是否创建 Objective-C brid ...
- WPF:理解ContentControl——动态添加控件和查找控件
WPF:理解ContentControl--动态添加控件和查找控件 我认为WPF的核心改变之一就是控件模型发生了重要的变化,大的方面说,现在窗口中的控件(大部分)都没有独立的Hwnd了.而且控件可以通 ...