collectAsMap(): Map[K, V]

返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个。
/**
* Return the key-value pairs in this RDD to the master as a Map.
*
* Warning: this doesn't return a multimap (so if you have multiple values to the same key, only
* one value per key is preserved in the map returned)
*
* @note this method should only be used if the resulting data is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collectAsMap(): Map[K, V]
scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> rdd.collectAsMap
res0: scala.collection.Map[String,Int] = Map(A -> 3, C -> 3, B -> 2)

countByKey(): Map[K, Long]

计算有多少个不同的key.
/**
* Count the number of elements for each key, collecting the results to a local Map.
*
* Note that this method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which
* returns an RDD[T, Long] instead of a map.
*/
def countByKey(): Map[K, Long] = self.withScope {
self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
}
scala> val rdd = sc.parallelize(List((1,1),(1,2),(1,3),(2,1),(2,2),(2,3)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[5] at parallelize at <console>:24 scala> rdd.countByKey
res5: scala.collection.Map[Int,Long] = Map(1 -> 3, 2 -> 3)

countByValue()

计算不同的value个数,该函数首先通过map将每个元素转成(value,null)的key-value(value为null)对,
然后调用countByKey进行统计。 /**
* Return the count of each unique value in this RDD as a local map of (value, count) pairs.
*
* Note that this method should only be used if the resulting map is expected to be small, as
* the whole thing is loaded into the driver's memory.
* To handle very large results, consider using rdd.map(x =&gt; (x, 1L)).reduceByKey(_ + _), which
* returns an RDD[T, Long] instead of a map.
*/
def countByValue()(implicit ord: Ordering[T] = null): Map[T, Long] = withScope {
map(value => (value, null)).countByKey()
}
scala> val rdd = sc.parallelize(List(1,2,3,4,5,4,4,3,2,1))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[18] at parallelize at <console>:24 scala> rdd.countByValue
res12: scala.collection.Map[Int,Long] = Map(5 -> 1, 1 -> 2, 2 -> 2, 3 -> 2, 4 -> 3)

lookup(key: K)

根据key值搜索所有的value.
/**
* Return the list of values in the RDD for key `key`. This operation is done efficiently if the
* RDD has a known partitioner by only searching the partition that the key maps to.
*/
def lookup(key: K): Seq[V]
scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24 scala> rdd.lookup("A")
res2: Seq[Int] = WrappedArray(1, 2, 3)

checkpoint()

将RDD数据根据设置的checkpoint目录保存至硬盘中。

/**
* Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
* directory set with `SparkContext#setCheckpointDir` and all references to its parent
* RDDs will be removed. This function must be called before any job has been
* executed on this RDD. It is strongly recommended that this RDD is persisted in
* memory, otherwise saving it on a file will require recomputation.
*/
def checkpoint(): Unit
/*通过linux命令创建/home/check目录后,设置checkpoint directory*/
scala> sc.setCheckpointDir("/home/check") scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[6] at parallelize at <console>:24 /*
*执行下面的代码会在/home/check目录下创建一个空的目录/home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49
*/
scala> rdd.checkpoint /*
执行count后会在上述目录下创建一个rdd目录,rdd目录下是数据文件
*/
scala> rdd.count
res5: Long = 6
[root@localhost ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/
total
drwxr-xr-x. root root Sep : .
drwxr-xr-x. root root Sep : ..
[root@localhost ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/
total
drwxr-xr-x. root root Sep : .
drwxr-xr-x. root root Sep : ..
drwxr-xr-x. root root Sep : rdd-
[root@localhost ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/rdd-/
total
drwxr-xr-x. root root Sep : .
drwxr-xr-x. root root Sep : ..
-rw-r--r--. root root Sep : part-
-rw-r--r--. root root Sep : .part-.crc
-rw-r--r--. root root Sep : part-
-rw-r--r--. root root Sep : .part-.crc
-rw-r--r--. root root Sep : part-
-rw-r--r--. root root Sep : .part-.crc

collect()

返回RDD所有元素的数组。
/**
* Return an array that contains all of the elements in this RDD.
*
* @note this method should only be used if the resulting array is expected to be small, as
* all the data is loaded into the driver's memory.
*/
def collect(): Array[T]
scala> val rdd = sc.parallelize(1 to 10,3)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:24 scala> rdd.collect
res8: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

toLocalIterator: Iterator[T]

返回一个包含所有算的迭代器。
/**
* Return an iterator that contains all of the elements in this RDD.
*
* The iterator will consume as much memory as the largest partition in this RDD.
*
* Note: this results in multiple Spark jobs, and if the input RDD is the result
* of a wide transformation (e.g. join with different partitioners), to avoid
* recomputing the input RDD should be cached first.
*/
def toLocalIterator: Iterator[T]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> val it = rdd.toLocalIterator
it: Iterator[Int] = non-empty iterator scala> while(it.hasNext){
| println(it.next)
| }
1
2
3
4
5
6
7
8
9
10

count()

返回RDD中元素的数量。
/**
* Return the number of elements in the RDD.
*/
def count(): Long
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> rdd.count
res1: Long = 10

dependencies

返回该RDD的依赖RDD的地址。
/**
* Get the list of dependencies of this RDD, taking into account whether the
* RDD is checkpointed or not.
*/
final def dependencies: Seq[Dependency[_]]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> val rdd1 = rdd.filter(_>3)
rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at filter at <console>:26 scala> val rdd2 = rdd1.filter(_<6)
rdd2: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:28 scala> rdd2.dependencies
res2: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.OneToOneDependency@21c882b5)

partitions

以数组形式返回RDD各分区地址
/**
* Get the array of partitions of this RDD, taking into account whether the
* RDD is checkpointed or not.
*/
final def partitions: Array[Partition]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24 scala> rdd.partitions
res4: Array[org.apache.spark.Partition] = Array(org.apache.spark.rdd.ParallelCollectionPartition@70c, org.apache.spark.rdd.ParallelCollectionPartition@70d)

first()

返回RDD的第一个元素。
/**
* Return the first element in this RDD.
*/
def first(): T
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
scala> rdd.first
res5: Int = 1

fold(zeroValue: T)(op: (T, T) => T)

使用zeroValue和每个分区的元素进行聚合运算,最后各分区结果和zeroValue再进行一次聚合运算。
/**
* @param zeroValue the initial value for the accumulated result of each partition for the `op`
* operator, and also the initial value for the combine results from different
* partitions for the `op` operator - this will typically be the neutral
* element (e.g. `Nil` for list concatenation or `0` for summation)
* @param op an operator used to both accumulate results within a partition and combine results
* from different partitions
*/
def fold(zeroValue: T)(op: (T, T) => T): T
scala> val rdd = sc.parallelize(1 to 5)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at <console>:24 scala> rdd.fold(10)(_+_)
res13: Int = 35

Spark RDD Action 简单用例(一)的更多相关文章

  1. Spark RDD Action 简单用例(二)

    foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this ...

  2. Spark RDD Transformation 简单用例(三)

    cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ON ...

  3. Spark RDD Transformation 简单用例(二)

    aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTa ...

  4. Spark RDD Transformation 简单用例(一)

    map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: C ...

  5. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

  6. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  7. Apache Spark RDD(Resilient Distributed Datasets)论文

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  8. Spark RDD深度解析-RDD计算流程

    Spark RDD深度解析-RDD计算流程 摘要  RDD(Resilient Distributed Datasets)是Spark的核心数据结构,所有数据计算操作均基于该结构进行,包括Spark ...

  9. spark RDD 常见操作

    fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...

随机推荐

  1. SoapUI Pro Project Solution Collection-access the soapui object

    Technorati 标签: Soapui pro,web service,apI Testing

  2. 基于Centos搭建 Discuz 论坛

    系统要求:CentOS 6.8 64 位操作系统 搭建 Discuz 论坛 准备 LAMP 环境 LAMP 是 Linux.Apache.MySQL 和 PHP 的缩写,是 Discuz 论坛系统依赖 ...

  3. C#.NET使用Task,await,async,异步执行控件耗时事件(event),不阻塞UI线程和不跨线程执行UI更新,以及其他方式比较

    使用Task,await,async,异步执行事件(event),不阻塞UI线程和不跨线程执行UI更新 使用Task,await,async 的异步模式 去执行事件(event) 解决不阻塞UI线程和 ...

  4. 11G新特性 -- flashback data archive(2)

    创建Flashback Data Archive用户需要授予dba或flashback archive administer系统特权.flashback archive administer系统特权包 ...

  5. Spark2.3 HA集群的分布式安装

    一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/a ...

  6. C#-MVC开发微信应用(5)--自动应答系统-自动回复机器人

    前几篇已经介绍菜单和有回复信息操作,下面我们就结合snf微信端管理页面,看一下什么才是自动应答系统. 定制的服务 对于微信服务号来说,最主要的功能是提供更好的服务.用户更方便的操作,以及更快的反馈响应 ...

  7. Gradle环境变量的配置

    配置GRADLE_HOME: 找到Android Studio中gradle的位置 E:\Android_Studio\gradle\gradle-2.10 配置GRADLE_USER_HOME: 找 ...

  8. Docker 管理应用程序数据

    1.将Docker主机数据挂载到容器 Docker提供三种不同的方式将数据从宿主机挂载到容器中:volumes , bind mounts 和tmpfs volumes:  Docker管理宿主机文件 ...

  9. ipa重签名

    为什么要研究重签名问题?将程序打包成ipa包后,ipa包中会包含Provisioning Profile和_CodeSignature等文件,里面包含了对整个ipa的签名信息. 一旦改动ipa中的不论 ...

  10. jmeter源码导入eclipse并完成编译

    其次是去ant官网下载最新版的ant二进制包,安装ant,并配置环境变量ANT_HOME,Path:验证安装是否成功: apache-jmeter-3.0的要求). 1.在eclipse中新建java ...