题目地址

题目链接

题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

复制

2

输出样例#1:

复制

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

题解

这东西其实就是\(\large\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\)

但是这个求和并不好搞,我们可以转化一下变成\(\large[gcd(i,j)=k]\)的类似形式

然后可以用莫比乌斯函数的性质来搞,也可以反演

因为不会反演,所以就放一个用性质的推导(这里的除法都是整除)

\[\large{
\begin{align*}
&\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\\
&=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n{[gcd(i,j)=d]}\\
&=\sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}{[gcd(i,j)=1]}\\
&=\sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\sum_{k|gcd(i,j)}\mu(k)\\
&=\sum_{d=1}^nd\sum_{k=1}^{n/d}\sum_{i=1}^{n/d/k}\sum_{j=1}^{n/d/k}\mu(k)*(n/d/k)^2\\
\end{align*}
}
\]

#include <bits/stdc++.h>
using namespace std; #define ll long long
const int N = 1e5 + 10; int p[N], mu[N], vis[N], sum[N];
int n, cnt = 0;
ll ans = 0; void init() {
mu[1] = 1;
for(int i = 2; i < N; ++i) {
if(!vis[i]) {p[++cnt] = i; mu[i] = -1;}
for(int j = 1; j <= cnt && p[j] * i < N; ++j) {
vis[p[j] * i] = 1;
if(i % p[j] == 0) break;
mu[i * p[j]] -= mu[i];
}
}
for(int i = 1; i < N; ++i) sum[i] = sum[i - 1] + mu[i];
} ll calc(int n) {
ll s = 0;
for(int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
s += (ll)((ll)(n/l) * (ll)(n/l) * (ll)(sum[r] - sum[l - 1]));
}
return s;
} int main() {
init();
scanf("%d", &n);
for(int d = 1; d <= n; ++d) {
ans += 1ll * d * calc(n / d);
}
printf("%lld\n", ans);
}

LuoguP2398 GCD SUM的更多相关文章

  1. luoguP2398 GCD SUM [gcd]

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  2. acdream 1148 GCD SUM 莫比乌斯反演 ansx,ansy

    GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatis ...

  3. GCD SUM 强大的数论,容斥定理

    GCD SUM Time Limit: 8000/4000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatu ...

  4. Luogu2398 GCD SUM

    Luogu2398 GCD SUM 求 \(\displaystyle\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\) \(n\leq10^5\) 数论 先常规化式子(大雾 \[ ...

  5. bnu——GCD SUM (莫比乌斯反演)

    题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h& ...

  6. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  7. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  8. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  9. GCD SUM

    GCD SUM 求 \[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) \] 将原式变换得到 \[\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{ ...

随机推荐

  1. Hive中实现group concat功能(不用udf)

    在 Hive 中实现将一个字段的多条记录拼接成一个记录: hive> desc t; OK id string str string Time taken: 0.249 seconds hive ...

  2. python的print函数自动换行及其避免

    print函数自带换行功能,即在输出内容后会自动换行,但是有时我们并不需要这个功能,那怎么办呢?这时候就需要用到end这个参数了,使用方法参考下面这段打印$矩阵的代码: i = 1 while i&l ...

  3. python smtplib 发送邮件简单介绍

    SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式python的smtplib提供了一种很 ...

  4. [转载]Javascript:history.go()和history.back()的用法和区别

    Javascript:history.go()和history.back()的用法和区别 简单的说就是:go(-1): 返回上一页,原页面表单中的内容会丢失:back(): 返回上一页,原页表表单中的 ...

  5. [转载]css代码优化的12个技巧

    1.ID 规则2.Class 规则3.标签规则4.通用规则对效率的普遍认识是从Steve Souders在2009年出版的<高性能网站建设进阶指南>开始,虽然该书中罗列的更加详细,但你也可 ...

  6. socket聊天的业务逻辑

        一.主要思想:     1.如果用户A想要发消息给用户B,A需要将消息发送到一个服务器上,服务器接收到A发送的消息之后,再把消息发送给B,B接收到消息     2.当用户B断开连接时服务器不会 ...

  7. Let's Encrypt申请证书及使用

    Let's Encrypt是一个免费的.自动的,开放的CA. 形形色色有证书扩展名和类型,我是通过这篇文章明白个大体的:http://www.cnblogs.com/guogangj/p/411860 ...

  8. ltp-fcntl36 偶尔出现fail unexpected data offset 20928 value 94

    每次出错的都是和posix相关先把结论说了: fn_ofd_w和fn_ofd_r的SAFE_FCNTL参数F_OFD_SETLKW fn_posix_w和fn_posix_r的SAFE_FCNTL参数 ...

  9. 深度估计&平面检测小结

    https://yq.aliyun.com/ziliao/582885 最近一段时间已知忙着赶图像分析与理解的项目,在三个星期内强行接触了CNN,MRF,Caffe,openCV在内的很多东西.现在项 ...

  10. Eloquent JavaScript #12# Handling Events

    索引 Notes onclick removeEventListener Event objects stopPropagation event.target Default actions Key ...