TensorFlow 框架
TensorFlow
TensorFlow核心程序由2个独立部分组成:
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0)# also tf.float32 implicitly
print(node1, node2)
结果:
Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0",shape=(), dtype=float32)
1.2运行计算图
我们必须用到session:一个session封装了TensorFlow运行时的控制和状态
sess = tf.Session()
print(sess.run([node1, node2]))
1.3 我们可以组合Tensor节点操作(操作仍然是一个节点)来构造更加复杂的计算,
node3 = tf.add(node1, node2)
print("node3:", node3)
print("sess.run(node3):", sess.run(node3))
运行结果:
node3:Tensor("Add:0", shape=(), dtype=float32)
sess.run(node3):7.0
1.4 TensorFlow提供一个统一的调用称之为TensorBoard,它能展示一个计算图的图片;如下面这个截图就展示了这个计算图
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
print(sess.run(adder_node, {a:3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2,4]}))
7.5
[3. 7.]
add_and_triple = adder_node *3.
print(sess.run(add_and_triple, {a:3, b:4.5}))
输出结果是:
22.5
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W*x + b
1.8 当你调用tf.constant时常量被初始化,它们的值是不可以改变的,而变量当你调用tf.Variable时没有被初始化,
init = tf.global_variables_initializer()
sess.run(init)
1.9 要实现初始化所有全局变量的TensorFlow子图的的处理是很重要的,直到我们调用sess.run,这些变量都是未被初始化的。
print(sess.run(linear_model, {x: [1,2,3,4]}))
求值linear_model
输出为
[0. 0.30000001 0.60000002 0.90000004]
1.10 我们已经创建了一个模型,但是我们至今不知道它是多好,在这些训练数据上对这个模型进行评估,我们需要一个
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x: [1,2,3,4], y: [0, -1, -2, -3]}))
输出的结果为
23.66
1.11 我们分配一个值给W和b(得到一个完美的值是-1和1)来手动改进这一点,一个变量被初始化一个值会调用tf.Variable,
fixW=tf.assign(W,[1.])
fixb = tf.assign(b, [1.])
sess.run([fixW, fixb])
print(sess.run(loss, {x: [1,2,3,4], y: [0, -1, -2, -3]}))
最终打印的结果是:
0.0
1.12 tf.train APITessorFlow提供optimizers(优化器),它能慢慢改变每一个变量以最小化损失函数,最简单的优化器是
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
sess.run(init)# reset values to incorrect defaults.
for iin range(1000):
sess.run(train, {x: [1,2,3,4], y: [0, -1, -2, -3]}) print(sess.run([W, b]))
输出结果为
[array([-0.9999969], dtype=float32), array([ 0.99999082], dtype=float32)]
本文仅用于学习研究,非商业用途,如需参考,请注明出处,作者:木子龙。
本文参考了以下地址的讲解,万分感谢,如有侵权,请联系我会尽快删除,929994365@qq.com:
https://blog.csdn.net/lengguoxing/article/details/78456279
https://www.cnblogs.com/kang06/p/9373600.html
TensorFlow 框架的更多相关文章
- TensorFlow框架(3)之MNIST机器学习入门
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是M ...
- TensorFlow框架(5)之机器学习实践
1. Iris data set Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类, ...
- 人工智能 tensorflow框架-->简介及安装01
简介:Tensorflow是google于2015年11月开源的第二代机器学习框架. Tensorflow名字理解:图形边中流动的数据叫张量(Tensor),因此叫Tensorflow 既 张量流动 ...
- 【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python ...
- 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...
- 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...
- 深度学习Tensorflow框架的安装
选择下载安装Anaconda3.4.2.0-python3.5版本安装(3.6版本不适合后面opencv-python的安装): 打开Anaconda Prompt命令窗口编辑界面(黑窗口),输入py ...
- 吴裕雄--天生自然 神经网络人工智能项目:基于深度学习TENSORFLOW框架的图像分类与目标跟踪报告(续四)
2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的 ...
- python机器学习TensorFlow框架
TensorFlow框架 关注公众号"轻松学编程"了解更多. 一.简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运 ...
- (第一章第五部分)TensorFlow框架之变量OP
系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与Tensor ...
随机推荐
- DTLS协议中client/server的认证过程和密钥协商过程
我的总结:DTLS的握手就是协商出一个对称加密的秘钥(每个客户端的秘钥都会不一样),之后的通信就要这个秘钥进行加密通信.协商的过程要么使用非对称加密算法进行签名校验身份,要么通过客户端和服务器各自存对 ...
- maven中修改可用的版本
一般情况下,我们都是建项目,写代码,然后再部署运行的.到最后因为版本问题无法部署的情况下怎么办?重新建项目,然后导代码,这太麻烦了. 一般的处理情况:在项目的硬盘目录中,找到.setting文件夹下的 ...
- koa的洋葱圈模型
拿以下这段代码为例: const Koa = require('koa'); const app = new Koa(); // x-response-time app.use(async (ctx, ...
- Ansible拷贝文件遇到的问题
ansible报错Aborting, target uses selinux but python bindings (libselinux-python) aren't installed 报错内容 ...
- Unity触发器有时失效的原因
unity里面的触发器有时候不起作用,我原以为是失效了.其实是这样的,所谓触发器就是被触发的物体,例如你子弹打小怪.如果把子弹设置成触发器那么是不成功的,因为子弹是主动的啊,那么把小怪设置成触发器了呢 ...
- Ubuntu18.04下vim的tab缩进设置为4个空格
在/etc/vim/vimrc最后添加如下内容 set ts = 4 set exbandtab set autoindent
- 电脑爱好——PE系统分区工具 分区时函数错误,报000000001错误 解决方法
1.启动硬盘分区软件diskgenius(一般都是这个分区软件,这个PE系统自带的居多) 2.将现有的分区全部删掉 3.选择菜单栏——“硬盘”——“转换分区表类型为MBR格式”——转换完成 4.快速分 ...
- 使用jQuery实现返回顶部功能
<p id="back-to-top"><a href="#top"><span></span>返回顶部< ...
- luogu P3960 列队
传送门 因为\(Splay\)可以\(O(logn)\)维护区间,所以直接对每一行维护第一个元素到倒数第二个元素的\(Splay\),最后一列维护一个\(Splay\),每次把选出来的点删掉,然后把那 ...
- 第4月第10天 iOS项目 mvc
1. 一个uiviewcontroller发送网络请求,解析数据后放在数组里.如果是多个网络请求,就要多个成员变量存储.那是不是可以单独出一个model来解析数据,存储数据呢. 如果有一个Reques ...