回归树(Regression Tree)
说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中的一个。但是对于决策树解决回归问题,一直是一知半解,很多时候都是一带而过。
对于一个回归问题,我们第一时间想到的可能就是线性回归(linear regression),当线性回归不好的时候,可能想着用 SVR(Support Vector Regression)试试。但回归树(regression tree)也很重要,现在 shallow learning 被 SVM 和树模型统治,随机森林、GBDT、xgboost、lightGBM 大行其道,所以知道什么是回归树很有必要。
常用的决策树有 ID3、C4.5、CART 等,其中 CART 就可以用来做回归问题,CART 全称就是 Classification And Regression Tree(分类和回归树)。至于 ID3 和 C4.5,能不能用来做回归问题,等了解完 CART 回归树再讨论。
接下来我们介绍将 CART 用于回归问题。
回归树
回归树(regression tree),顾名思义,就是用树模型做回归问题,每一片叶子都输出一个预测值。预测值一般是该片叶子所含训练集元素输出的均值,即 \(c_{m} = ave(y_i | \bm x_i \in leaf_m)\)。
CART 在分类问题和回归问题中的相同和差异:
- 相同:
- 在分类问题和回归问题中,CART 都是一棵二叉树,除叶子节点外的所有节点都有且仅有两个子节点;
- 所有落在同一片叶子中的输入都有同样的输出。
- 差异:
- 在分类问题中,CART 使用基尼指数(Gini index)作为选择特征(feature)和划分(split)的依据;在回归问题中,CART 使用 mse(mean square error)或者 mae(mean absolute error)作为选择 feature 和 split 的 criteria。
- 在分类问题中,CART 的每一片叶子都代表的是一个 class;在回归问题中,CART 的每一片叶子表示的是一个预测值,取值是连续的。
下面以 criteria = 'mse' 为例,介绍 CART 回归树。
理论解释
给定一个数据集 \(D = \{(\bm x_1, y_1), (\bm x_2, y_2), ..., (\bm x_i, y_i), ...,(\bm x_n, y_n)\}\),其中 \(\bm x_i\) 是一个 m 维的向量,即 \(x_i\) 含有 m 个 features。
回归问题的目标就是构造一个函数 \(f(\bm x)\) 能够拟合数据集 \(D\) 中的元素,使得 mse 最小,即:
\[
\min \frac{1}{n} \sum_{i = 1}^{n} (f(\bm x_i) - y_i)^2
\tag{1}
\]
用 CART 进行回归,目标自然也是一样的,最小化 mse。
假设一棵构建好的 CART 回归树有 \(M\) 片叶子,这意味着 CART 将输入空间 \(\bm x\) 划分成了 \(M\) 个单元 \(R_1, R_2, ..., R_M\),同时意味着 CART 至多会有 \(M\) 个不同的预测值。CART 最小化 mse 公式如下:
\[
\min \frac{1}{n} \sum_{m = 1}^{M}\sum_{\bm x_i \in R_m} (c_m - y_i)^2
\tag{2}
\]
其中,\(c_m\) 表示第 \(m\) 片叶子的预测值。
想要最小化 CART 总体的 mse,只需要最小化每一片叶子的 mse 即可,而最小化一片叶子的 mse,只需要将预测值设定为叶子中含有的训练集元素的均值,即:
\[
c_{m} = ave(y_i | \bm x_i \in leaf_m)
\tag{3}
\]
所以,在每一次的划分中,选择切分变量(splitting variable)和切分点(splitting point)时(也就是选择 feature 和将该 feature space 一分为二的 split),使得模型在训练集上的 mse 最小,也就是每片叶子的 mse 之和最小。
这里采用启发式的方法,遍历所有的切分变量和切分点,然后选出 叶子节点 mse 之和最小 的那种情况作为划分。选择第 \(j\) 个 feature \(\bm x^{(j)}\) 和它取的值 \(s\),作为切分变量和切分点,则切分变量和切分点将父节点的输入空间一分为二:
\[
\begin{split}
R_1\{j, s\} = \{\bm x| \bm x^{(j)} \le s\} \\
R_2\{j, s\} = \{\bm x| \bm x^{(j)} > s\}
\end{split}
\tag{4}
\]
CART 选择切分变量 \(j\) 和 切分点 \(s\) 的公式如下:
\[
\min_{j, s} \left[\min_{c_1} \sum_{\bm x_i \in R_1\{j, s\}} (y_i - c_1)^2 + \min_{c_2} \sum_{\bm x_i \in R_2\{j, s\}} (y_i - c_2)^2 \right]
\tag{5}
\]
采取遍历的方式,我们可以将 \(j\) 和 \(s\) 找出来:先固定 feature \(j\) 再选出在该 feature 下的最佳划分 \(s\);对每一个 feature 都这样做,那么有 \(m\) 个feature,我们就能得到 \(m\) 个 feature 对应的最佳划分,从这 \(m\) 个值中取最小值即可得到令全局最优的 \((j, s)\)。式(5)中,第一项 \(\min_{c_1} \sum_{x_i \in R_1\{j, s\}} (y_i - c_1)^2\) 得到的 \(c_1\) 值按照式(3)就是 \(ave(y_i | \bm x_i \in R_1\{j, s\})\),同理,第二项中 \(c_2 = ave(y_i | \bm x_i \in R_2\{j, s\})\) 。
算法流程

ID3 和 C4.5 能不能用来回归?
CART 是一棵二叉树,那么只要回归树不是一棵二叉树,那么就不是 CART 树了。
在分类问题中,ID3、C4.5 和 CART 的区别就在与划分子节点的策略不同,信息增益、增益比、基尼指数;而在回归问题中,criteria 是 mse 或者 mae,这种情况下,分类时的 ID3、C4.5、CART 之间的区别就没了,那么就是每个父节点划分成多少个子节点的问题了,如果还是二叉树,那么就认为是 CART 回归树,否则就不是了。
如果你在同一个时刻对某一个 feature \(\bm x^{(j)}\) 选择两个切分点 \(s_1\) 和 \(s_2\) 来划分父节点,那么就将产生三个区间 \(R_1\{j, s_1\}, R_2\{j, s_1, s_2\}, R_3\{j, s_2\}\),这种做法无疑增大了遍历的难度,如果选择更多个切分点,那么遍历的难度会指数上升。如果我们想要细分多个区域,让 CART 回归树更深即可,这样遍历的难度会小很多。
所以,固然可以构建非 CART 回归树,但是不如 CART 回归树来的更简单。
回归树示例
Decision Tree Regression -- scikit-learn
References
《统计学习方法》-- 李航
Decision Tree Regression -- scikit-learn
回归树(Regression Tree)的更多相关文章
- CART分类与回归树与GBDT(Gradient Boost Decision Tree)
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html Classification And Regression Tree(CART)是决策 ...
- 集成方法:渐进梯度回归树GBRT(迭代决策树)
http://blog.csdn.net/pipisorry/article/details/60776803 单决策树C4.5由于功能太简单.而且非常easy出现过拟合的现象.于是引申出了很多变种决 ...
- 用决策树模型求解回归问题(regression tree)
How do decision trees for regression work? 决策树模型既可以求解分类问题(对应的就是 classification tree),也即对应的目标值是类别型数据, ...
- 利用CART算法建立分类回归树
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后 ...
- CART分类与回归树 学习笔记
CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问 ...
- class-决策树Decision Tree
顾名思义,决策树model是树形结构,在分类中,表示基于特征对实例进行分类的过程.可以认为是"if-else"的合集,也可以认为是特征空间,类空间上条件概率分布.主要优点是分类速度 ...
- CART决策树(分类回归树)分析及应用建模
一.CART决策树模型概述(Classification And Regression Trees) 决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节 ...
- 决策树的剪枝,分类回归树CART
决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本.前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的.因此用这个决策树来 ...
- 【机器学习】迭代决策树GBRT(渐进梯度回归树)
一.决策树模型组合 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF. ...
随机推荐
- java之Spring(IOC)注解装配Bean详解
在这里我们要详细说明一下利用Annotation-注解来装配Bean. 因为如果你学会了注解,你就再也不愿意去手动配置xml文件了,下面就看看Annotation的魅力所在吧. 先来看看之前的bean ...
- remove the nth node from the end of the list
problem description: remove the nth node from the end of the list for example: given: 1->2->3 ...
- 全文检索-Lucene.net
Lucene.net是Lucene的.net移植版本,在较早之前是比较受欢迎的一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎. ...
- hi-nginx-javascript vs node.js
hi-nginx-1.4.9已经支持javascript,这意味着把javascript应用于后端开发,将不再只有nodejs这唯一的途径和方法.由于java本身对javascript的极好支持,使得 ...
- DataFrame
DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值等),DataFrame就行索引也有列索引,可以被看做由Series组成的字典(共用同一个索引) ...
- linux 用户空间与内核空间——高端内存详解
摘要:Linux 操作系统和驱动程序运行在内核空间,应用程序运行在用户空间,两者不能简单地使用指针传递数据,因为Linux使用的虚拟内存机制,用户空间的数据可能被换出,当内核空间使用用户空间指针时,对 ...
- spring中bean的scope属性理解
bean的scope属性有prototype,singleton,request, session几个属性 spring和struts2整合的时候,struts2的action要配置成scope=&q ...
- 对try-catch-finally异常处理的最新理解
try{ ...... }catch(......){ }finally{ ...... } 这个结构是用来处理Java所有可能出现的异常的,这个我很早其实就已经学过,不过最近看了个视频,感觉自己虽然 ...
- Kali Linux配置ssh服务
操作环境: 虚拟机操作系统: Kali Linux 2017.2 虚拟化软件: VMware Workstation 14 pro 虚拟机网络连接方式: 桥接模式 物理机操作系统: Windows10 ...
- CORS 实战 专题
本文会代码层面对CORS问题进行剖析 CORS相关相关概念可参考http://www.cnblogs.com/softidea/p/5496719.html ERROR info: XMLHttpRe ...