题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入输出格式

输入格式:

第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1<P<m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出格式:

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

输入输出样例

输入样例#1:

  5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
输出样例#1:

32

说明

【样例输入说明】

上图依次表示第1至第5天的情况,阴影表示不可用的码头。

【样例输出说明】

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32。

题解:

我们先预处理出从[L,R]这几天中&&在满足某些点不能走的情况下的最短路,记为C[N][N];

于是可以进行DP:

设F[I]为前i天的最小总成本,可以得出: F[i]=min(F[i],F[j]+c[j+1][i]*(i-j)+k) k为改变线路所需的费用,(i-j)为这一段时间内的天数

具体看代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
using namespace std;
typedef long long ll;
const int N=,M=;
int n,m,k,day;
int gi()
{
int str=;bool f=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<='')str=str*+ch-'',ch=getchar();
return str*f;
}
const int INF=;
struct Lin
{
int next,to,dis;
}a[N*N*];
bool vis[N];
int head[N],num=;int c[N][N],f[N];
bool nort[];
bool d[][N];
int F[N];
void spfa(int from,int to)//表示从第from天到to天
{
int x,u;
queue<int>q;
q.push();
for(int i=;i<=n;i++)f[i]=INF,vis[i]=false;
vis[]=true;f[]=;
while(!q.empty())
{
x=q.front();q.pop();
for(int i=head[x];i;i=a[i].next){
u=a[i].to;
if(!nort[u]){//如果该点在from-to中不能通行则不能加入队列
if(f[x]+a[i].dis<f[u]){
f[u]=f[x]+a[i].dis;
if(!vis[u]){
vis[u]=true;q.push(u);
}
}
}
}
vis[x]=false;
}
c[from][to]=f[n];
}
void init(int x,int y,int z)
{
a[++num].next=head[x];
a[num].to=y;
a[num].dis=z;
head[x]=num;
}
int main()
{
int x,y,z;
day=gi();n=gi();k=gi();m=gi();
for(int i=;i<=m;i++){
x=gi();y=gi();z=gi();
init(x,y,z);init(y,x,z);
}
int ppap=gi(),ls,rs;
for(int i=;i<=ppap;i++){
x=gi();ls=gi();rs=gi();
for(int j=ls;j<=rs;j++)d[x][j]=true;
}
for(int i=;i<=day;i++){//预处理
memset(nort,,sizeof(nort));
for(int j=i;j<=day;j++){
for(int k=;k<=n;k++)nort[k]|=d[k][j];
spfa(i,j);
}
}
memset(F,/,sizeof(F));
F[]=-k;
for(int i=;i<=day;i++){
for(int j=;j<=i-;j++)
if(c[j+][i]!=INF)
F[i]=min(F[i],F[j]+c[j+][i]*(i-j)+k);
}
printf("%d",F[day]);
return ;
}

[ZJOI2006]物流运输 SPFA+DP的更多相关文章

  1. BZOJ 1003[ZJOI2006]物流运输(SPFA+DP)

    Problem 1003. -- [ZJOI2006]物流运输 1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: ...

  2. [Bzoj1003][ZJOI2006]物流运输(spfa+dp)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1003 比较简单的dp,dp[i]为1-i天最小费用,dp方程为dp[i] = min(d ...

  3. bzoj1003: [ZJOI2006]物流运输(DP+spfa)

    1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...

  4. [luoguP1772] [ZJOI2006]物流运输(DP + spfa)

    传送门 预处理cost[i][j]表示从第i天到第j天起点到终点的最短距离 f[i]表示前i天到从起点到终点的最短距离 f[0] = -K f[i] = min(f[i], f[j - 1] + co ...

  5. BZOJ 1003: [ZJOI2006]物流运输trans DP+最短路

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  6. 2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)

    传送门 dp好题. 每一天要变更路线一定还是走最短路. 所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路.显然是可以dp的. 设f[i]表示第i天的最优花销.那么我们枚举在 ...

  7. BZOJ_1003_[ZJOI2006]物流运输_最短路+dp

    BZOJ_1003_[ZJOI2006]物流运输_最短路+dp 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1003 分析: 这种一段一段的显 ...

  8. bzoj 1003 [ZJOI2006]物流运输(最短路+dp)

    [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 8973  Solved: 3839[Submit][Status][Di ...

  9. BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)

    1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...

随机推荐

  1. PHP、Java、Python、C、C++ 这几种编程语言都各有什么特点或优点

    PHP.Java.Python.C.C++ 这几种编程语言都各有什么特点或优点 汇编: C: Java: C#: PHP: Python: Go: Haskell: Lisp: C++: &l ...

  2. R语言基础2

    ----------------------------------R语言学习与科研应用,科研作图,数据统计挖掘分析,群:719954246-------------------------- 通常, ...

  3. java JDK源码解析

    Hashmap 使用java语言进行系统开发时,使用得比较多得数据结构hashmap,它以[key,value],进行数据存储,通过key可以快速找到到对应的value值,但是key,value不能是 ...

  4. thinkphp中ajax技术

    thinkphp可以直接返回json数据,json数据事可以跟前端的js通用的

  5. Service Worker和HTTP缓存

    很多人,包括我自己,初看Service Worker多一个Cache Storage的时候,就感觉跟HTTP长缓存没什么区别. 例如大家讲的最多的Service Worker能让网页离线使用,但熟悉H ...

  6. 记录Yii2代码调试中出现的两个问题(截图展示)

    1.代码会中断执行,不提示错误信息,是由于substr函数第一个参数为数组造成的 2. 谷歌浏览器调试异步调用接口时出现的错误,需在接口返回处进行断点调试 这两个错误比较隐蔽,调试代码时必须认真仔细

  7. OpenID Connect 是什么?

    一.OpenID Connect的概念 1.OpenID Connect 是什么? OpenID Connect 是一套基于 OAuth 2.0 协议的轻量级规范,提供通过 API 进行身份交互的框架 ...

  8. linux ubunt 安装软件的前期准备——更新源的更换

    如果是高手,请翻到页面最下方,更换更新源的总结,直接操作即可 可能会优点啰嗦,但是认真看,一定能解决问题~~希望对大家有帮助~ 最近在熟悉linux环境,自己安装了一个ubuntu虚拟机. 很多朋友问 ...

  9. 简单搭建SpringMVC框架详解

    在公司待了两年,用的一直是Spring+SpringMVC+Hibernate框架,都是公司自己搭建好的,自己从来没有主动搭建过,闲来无聊,自己搭建试试.一下即我搭建的过程以及搭建所遇到的问题,有部分 ...

  10. python CSRF跨站请求伪造

    python CSRF跨站请求伪造 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...