[ZJOI2006]物流运输 SPFA+DP
题目描述
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
输入输出格式
输入格式:
第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1<P<m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。
输出格式:
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
输入输出样例
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
32
说明
【样例输入说明】

上图依次表示第1至第5天的情况,阴影表示不可用的码头。
【样例输出说明】
前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32。
题解:
我们先预处理出从[L,R]这几天中&&在满足某些点不能走的情况下的最短路,记为C[N][N];
于是可以进行DP:
设F[I]为前i天的最小总成本,可以得出: F[i]=min(F[i],F[j]+c[j+1][i]*(i-j)+k) k为改变线路所需的费用,(i-j)为这一段时间内的天数
具体看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
using namespace std;
typedef long long ll;
const int N=,M=;
int n,m,k,day;
int gi()
{
int str=;bool f=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<='')str=str*+ch-'',ch=getchar();
return str*f;
}
const int INF=;
struct Lin
{
int next,to,dis;
}a[N*N*];
bool vis[N];
int head[N],num=;int c[N][N],f[N];
bool nort[];
bool d[][N];
int F[N];
void spfa(int from,int to)//表示从第from天到to天
{
int x,u;
queue<int>q;
q.push();
for(int i=;i<=n;i++)f[i]=INF,vis[i]=false;
vis[]=true;f[]=;
while(!q.empty())
{
x=q.front();q.pop();
for(int i=head[x];i;i=a[i].next){
u=a[i].to;
if(!nort[u]){//如果该点在from-to中不能通行则不能加入队列
if(f[x]+a[i].dis<f[u]){
f[u]=f[x]+a[i].dis;
if(!vis[u]){
vis[u]=true;q.push(u);
}
}
}
}
vis[x]=false;
}
c[from][to]=f[n];
}
void init(int x,int y,int z)
{
a[++num].next=head[x];
a[num].to=y;
a[num].dis=z;
head[x]=num;
}
int main()
{
int x,y,z;
day=gi();n=gi();k=gi();m=gi();
for(int i=;i<=m;i++){
x=gi();y=gi();z=gi();
init(x,y,z);init(y,x,z);
}
int ppap=gi(),ls,rs;
for(int i=;i<=ppap;i++){
x=gi();ls=gi();rs=gi();
for(int j=ls;j<=rs;j++)d[x][j]=true;
}
for(int i=;i<=day;i++){//预处理
memset(nort,,sizeof(nort));
for(int j=i;j<=day;j++){
for(int k=;k<=n;k++)nort[k]|=d[k][j];
spfa(i,j);
}
}
memset(F,/,sizeof(F));
F[]=-k;
for(int i=;i<=day;i++){
for(int j=;j<=i-;j++)
if(c[j+][i]!=INF)
F[i]=min(F[i],F[j]+c[j+][i]*(i-j)+k);
}
printf("%d",F[day]);
return ;
}
[ZJOI2006]物流运输 SPFA+DP的更多相关文章
- BZOJ 1003[ZJOI2006]物流运输(SPFA+DP)
Problem 1003. -- [ZJOI2006]物流运输 1003: [ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: ...
- [Bzoj1003][ZJOI2006]物流运输(spfa+dp)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1003 比较简单的dp,dp[i]为1-i天最小费用,dp方程为dp[i] = min(d ...
- bzoj1003: [ZJOI2006]物流运输(DP+spfa)
1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...
- [luoguP1772] [ZJOI2006]物流运输(DP + spfa)
传送门 预处理cost[i][j]表示从第i天到第j天起点到终点的最短距离 f[i]表示前i天到从起点到终点的最短距离 f[0] = -K f[i] = min(f[i], f[j - 1] + co ...
- BZOJ 1003: [ZJOI2006]物流运输trans DP+最短路
Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...
- 2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)
传送门 dp好题. 每一天要变更路线一定还是走最短路. 所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路.显然是可以dp的. 设f[i]表示第i天的最优花销.那么我们枚举在 ...
- BZOJ_1003_[ZJOI2006]物流运输_最短路+dp
BZOJ_1003_[ZJOI2006]物流运输_最短路+dp 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1003 分析: 这种一段一段的显 ...
- bzoj 1003 [ZJOI2006]物流运输(最短路+dp)
[ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 8973 Solved: 3839[Submit][Status][Di ...
- BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)
1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...
随机推荐
- 201621123060《JAVA程序设计》第十三周学习总结
1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多个用户通过网 ...
- 高级软件工程2017第6次作业--团队项目:Alpha阶段综合报告
高级软件工程2017第6次作业--团队项目:Alpha阶段综合报告 Deadline:2017-10-30(周一)21:00pm (注:以下内容参考集大作业4,集大作业5,集大作业6,集大作业7 一. ...
- STL常用整理
S T L Sting: << 判断拼音序 size length 字符串长度 str[n] 代表字符串中的一个字符 可用作左值 string::size_type 用于表示字符串长度计量 ...
- Android网络传输中必用的两个加密算法:MD5 和 RSA 及Base64加密总结
(1)commons-codec包简介 包含一些通用的编码解码算法.包括一些语音编码器,Hex,Base64.MD5 一.md5.base64.commons-codec包 commons-codec ...
- BAT齐聚阿里安全-ASRC生态大会:呼吁联合共建网络安全白色产业链
图说:近日,阿里安全-ASRC生态大会在杭州举行,包括BAT在内的20余家国内知名互联网企业代表,回顾过去一年网络安全面临的问题与挑战,共谋生态安全治理思路. "123456.111111. ...
- Mego(1) - NET中主流ORM框架性能对比
从刚刚开始接触ORM到现在已有超过八年时间,用过了不少ORM框架也了解了不少ORM框架,看过N种关于ORM框架的相关资料与评论,各种言论让人很难选择.在ORM的众多问题中最突出的问题是关于性能方面的问 ...
- SpringCloud是什么?
参考链接: http://blog.csdn.net/forezp/article/details/70148833 一.概念定义 Spring Cloud是一个微服务框架,相比Dubbo ...
- Linux--慕课学习
刚开始接触Linux,很有幸的在慕课网上看到了Peter老师的Linux入门课程,老师讲课真的式行云流水,深入浅出,循循善诱,层层递进. 老师分享的都是自己多年来总结的经验.看完之后也学到了很多东西. ...
- 使用NPOI-创建Excel
这里简单的使用一下NPOI ,什么是NPOI? 既然你已经在需要使用了,就一定知道NPOI是干什么用的了. 开始正题吧. 我用控制台程序来给大家演示一下: 一.创建控制台程序 自行脑补 二.添加NPO ...
- NGUI----简单聊天系统一
1:聊天背景的创建 新建一个场景-----保存场景 NGUI---->Create-----Panel 选中UIRoot,然后新建一个sprite 选择图集 效果如下图 添加一个可拖拽的功能 选 ...