题链:

主席树
首先,对于一些数来说,
如果可以我们可以使得其中的某些数能够拼出 1~ret
那么此时的ANS(神秘数)= ret+1
然后考虑,如果此时存在另一个数小于等于 ANS,(设该数为 x)
则一定可以在原来的1~ret的基础上拼出 1~ret+x
即 ANS 可以更新为 ret+x+1
所以具体的操作就是:
每次查询区间内小于ANS的数的和(SUM),然后如果SUM大于ANS,则更新ANS为SUM+1。
不断上述操作直到SUM<ANS为止。
主席数实现在序列区间中查询权值区间的和。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100500
using namespace std;
int A[MAXN],tmp[MAXN];
int N,M,tnt;
struct CMT{
long long sum[MAXN*20];
int rt[MAXN],ls[MAXN*20],rs[MAXN*20],sz;
void Insert(int v,int &u,int l,int r,int p){
u=++sz; ls[u]=ls[v]; rs[u]=rs[v];
sum[u]=sum[v]; sum[u]+=tmp[p];
if(l==r) return;
int mid=(l+r)>>1;
if(p<=mid) Insert(ls[v],ls[u],l,mid,p);
else Insert(rs[v],rs[u],mid+1,r,p);
}
long long Query(int v,int u,int l,int r,int al,int ar){
if(al<=l&&r<=ar) return sum[u]-sum[v];
int mid=(l+r)>>1; long long ret=0;
if(al<=mid) ret+=Query(ls[v],ls[u],l,mid,al,ar);
if(mid<ar) ret+=Query(rs[v],rs[u],mid+1,r,al,ar);
return ret;
}
void Build(){
for(int i=1;i<=N;i++)
Insert(rt[i-1],rt[i],1,tnt,A[i]);
}
}DT;
int main(){
// freopen("/home/noilinux/Documents/Code/BZOJ/4408.in","r",stdin);
// printf("BEGIN.\n");
scanf("%d",&N);
for(int i=1;i<=N;i++)
scanf("%d",&A[i]),tmp[i]=A[i];
sort(tmp+1,tmp+N+1);
tnt=unique(tmp+1,tmp+N+1)-tmp-1;
for(int i=1;i<=N;i++)
A[i]=lower_bound(tmp+1,tmp+tnt+1,A[i])-tmp;
scanf("%d",&M);
DT.Build(); long long ANS,ret,p;
for(int i=1,l,r;ANS=0,ret=0,i<=M;i++){
scanf("%d%d",&l,&r);
while(ANS<ret+1){
ANS=ret+1;
p=upper_bound(tmp+1,tmp+tnt+1,ANS)-tmp-1;
ret=DT.Query(DT.rt[l-1],DT.rt[r],1,tnt,1,p);
}
printf("%lld\n",ANS);
}
return 0;
}

  

 

●BZOJ 4408 [Fjoi 2016]神秘数的更多相关文章

  1. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

  2. BZOJ 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 281[Submit][Status ...

  3. BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树

    4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...

  4. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  5. bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...

  6. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  7. 4408: [Fjoi 2016]神秘数

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 452  Solved: 273 [Submit][Stat ...

  8. [BZOJ4408][Fjoi 2016]神秘数

    [BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...

  9. 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题

    [BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...

随机推荐

  1. C语言--第六周作业

    一.高速公路超速罚款 1.代码 #include<stdio.h> int main() { int a,b; float c; scanf("%d %d",& ...

  2. Beta冲刺Day5

    项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...

  3. OO第一次作业总结

    OO第一次学习总结 1.第一次作业:多项式加法 从未接触过java的我,在从输入输出开始学了几天后,按照C语言的思路,写出了一个与面向过程极其接近的程序. 在这个程序中,存在两个类:一个是Comput ...

  4. EasyUI datagrid 使用小结

    用了 EasyUI 框架一段时间了,这个前端框架用起来还是挺方便的,也有很多现成的控件,看看官方文档应该还是能比较快用起来的. 在这里记录一下一些常用的控件的方法,遇到过的bug或者当初耗了一点时间来 ...

  5. 第四章 使用jQuery操作DOM

    第四章 使用jQuery操作DOM 一.DOM操作 在jQuery中的DOM操作主要可分为样式操作.文本和value属性值操作.节点操作: 节点操作又包含属性操作.节点遍历和CSS-DOM操作. 其中 ...

  6. SQL Server(MySql)中的联合主键(联合索引) 索引分析

    最近有人问到这个问题,之前也一直没有深究联合索引具体使用逻辑,查阅多篇文章,并经过测试,得出一些结论 测试环境:SQL Server 2008 R2 测试结果与MySql联合索引查询机制类似,可以认为 ...

  7. Spring Security 入门(3-11)Spring Security 的登录密码验证过程 UsernamePasswordAuthenticationFilter

    认证过程如下 一.先判断请求(请求必须是post请求)地址是否为配置的 login-processing-url 值(默认/j_spring_security_check),如果不是,则放行,进入下一 ...

  8. 九、Python+Selenium模拟用QQ登陆腾讯课堂,并提取报名课程(练习)

    研究QQ登录规则的话,得分析大量Javascript的加密解密,比较耗时间.自己也是练习很少,短时间成功不了.所以走了个捷径. Selenium是一个WEB自动化测试工具,它运行时会直接实例化出一个浏 ...

  9. 使用 Angular CLI 和 Webpack 分析包尺寸

    使用 Angular CLI 和 Webpack 分析包尺寸 对于 Web app 来说,高性能总是最高优先级,对于 Angular 也不例外.但是随着应用复杂度的不断增长,我们如何才能知道哪些内容打 ...

  10. java集合小知识的复习

    *Map接口 Map<k,v>接口中接收两个泛型,key和value的两个数据类型 Map中的集合中的元素都是成对存在的每个元素由键与值两部分组成,通过键可以找对所对应的值.值可以重复,键 ...