Description

牛牛最近迷上了一种叫斗地主的扑克游戏。斗地主是一种使用黑桃、红心、梅花、方片的A到K加上大小王的共54张牌来进行的扑克牌游戏。在斗地主中,牌的大小关系根据牌的数码表示如下:3<4<5<6<7<8<9<10<J<Q<K<A<2<小王<大王,而花色并不对牌的大小产生影响。每一局游戏中,一副手牌由n张牌组成。游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利。现在,牛牛只想知道,对于自己的若干组手牌,分别最少需要多少次出牌可以将它们打光。请你帮他解决这个问题。需要注意的是,本题中游戏者每次可以出手的牌型与一般的斗地主相似而略有不同。具体规则如下:

Input

第一行包含用空格隔开的2个正整数T,N,表示手牌的组数以及每组手牌的张数。

接下来T组数据,每组数据N行,每行一个非负整数对Ai,Bi,表示一张牌,其中Ai表示牌的数码,Bi表示牌的花色,中间用空格隔开。特别的,我们用1来表示数码A,11表示数码J,12表示数码Q,13表示数码K;黑桃、红心、梅花、方片分别用1-4来表示;小王的表示方法为01,大王的表示方法为02。

Output

共T行,每行一个整数,表示打光第T组手牌的最少次数。

Sample Input

1 8
7 4
8 4
9 1
10 4
11 1
5 1
1 4
1 1

Sample Output

3

HINT

共有1组手牌,包含8张牌:方片7,方片8,黑桃9,方片10,黑桃J,黑桃5,方

片A以及黑桃A。可以通过打单顺子(方片7,方片8,黑桃9,方片10,黑桃J),单张
牌(黑桃5)以及对子牌(黑桃A以及方片A)在3次内打光。
T<=10
N<=23

题解

抓取有用信息:

出牌顺序不影响出牌次数。

30分算法:

1、$T≤100$,$n≤4$;
2、先特判掉三带一的情况,然后有几种不同点数的牌,答案就是几;注意两张王可以看成是相同点数;
3、时间复杂度$O(T*n)$

100分算法:

1、$T≤10$,$n≤23$;
2、既然出牌顺序不影响,那么不妨先出对子,包括单顺、双顺、三顺。具体就是直接暴力枚举每一个顺子,然后出掉,再枚举顺子,再出掉......
3、这样可以过吗?
一个顺子至少有$5$张牌,最多出$4$组顺子,递归层数很小;
然后在一组牌内可以产生$O(K^2)$个顺子,其中$K$表示能成为顺子组成部分的牌的种数,在这里$K=12$,然后这里的复杂度就是$O(K^8)$,看起来很大,其实实测完全可以跑出来;
4、然后就可以不考虑顺子了,那么对于剩下的牌,我们就只能一个一个或者一对一对或者一带一带地出,也就是说出牌次数与牌的点数无关了;
5、那么我们可以预处理一个$dp[a][b][c][d]$,表示手牌有"$d$张单牌,$c$个对子,$b$个三张,$a$个炸弹"的时候,把牌出完的最少次数。
6、可以动态规划求解,$joker$可以拿出单独讨论。
7、时间复杂度$O(n^4+T*K^8)$。

这道题还有数据增强版,就是多考虑几个条件,把牌拆开(详见代码中的$extra$)。

 #include <set>
#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int INF = ~0u>>;
const int lenth[] = {, , , }; int n, t;
int card[], f[][][][];
int ans; int getrest(int r1, int r2, int r3, int r4, int joker){
if (joker == ) r1++,joker--;
if (joker) return Min(f[r4][r3][r2][r1+], f[r4][r3][r2][r1]+);
return f[r4][r3][r2][r1];
}
void dfs(int t){
if (t >= ans) return;
int c[] = {};
for (int i = ; i <= ; i++) c[card[i]]++;
ans = Min(ans, t+getrest(c[], c[], c[], c[], card[]));
for (int len = ; len <= ; len++)
  for (int i = ; i <= ; i++){
  int j = i;
  for (;j <= && card[j] >= len; j++){
     card[j] -= len;
    if (j-i+ >= lenth[len]) dfs(t+);
  }
  for (j--; j >= i; j--) card[j] += len;
  }
}
void pre(){
memset(f, /, sizeof(f));
f[][][][] = ;
for (int i = ; i <= n; i++)
  for (int j = ; j <= n; j++)
   for (int p = ; p <= n; p++)
     for (int q = ; q <= n; q++)
      if (i*+j*+p*+q <= n)
     {
       f[i][j][p][q] = i+j+p+q;
       if (i){
       if (p >= ) f[i][j][p][q] = Min(f[i][j][p][q], f[i-][j][p-][q]+);//四带两对
       if (q >= ) f[i][j][p][q] = Min(f[i][j][p][q], f[i-][j][p][q-]+);//四带二
       if (p) f[i][j][p][q] = Min(f[i][j][p][q], f[i][j][p-][q+]);//extra:把对子拆成一个单的
       f[i][j][p][q] = Min(f[i][j][p][q], f[i-][j][p+][q]);//extra:把炸拆成两对
       f[i][j][p][q] = Min(f[i][j][p][q], f[i-][j+][p][q+]);//extra:把炸拆成单张和三张
       f[i][j][p][q] = Min(f[i][j][p][q], f[i-][j][p][q]+);//出炸
       }
       if (j){
       if (p) f[i][j][p][q] = Min(f[i][j][p][q], f[i][j-][p-][q]+);//三带一对
       if (q) f[i][j][p][q] = Min(f[i][j][p][q], f[i][j-][p][q-]+);//三带一
       f[i][j][p][q] = Min(f[i][j][p][q], f[i][j-][p+][q+]);//extra:三拆成二+一
       f[i][j][p][q] = Min(f[i][j][p][q], f[i][j-][p][q]+);//直接出三张
       }
       if (p) f[i][j][p][q] = Min(f[i][j][p][q], f[i][j][p-][q]+);//直接出对子
      if (q) f[i][j][p][q] = Min(f[i][j][p][q], f[i][j][p][q-]+);//直接出单张
     }
} int main(){
scanf("%d%d", &t, &n);
pre();
while (t--){
   memset(card, , sizeof(card));
   int a, b;
  ans = n;
  for (int i = ; i <= n; i++){
   scanf("%d%d", &a, &b);
   if (a == ) card[]++;
   else card[a]++;
   }
   dfs();
   printf("%d\n", ans);
}
return ;
}

[NOIp 2015]斗地主的更多相关文章

  1. Luogu 2668 NOIP 2015 斗地主(搜索,动态规划)

    Luogu 2668 NOIP 2015 斗地主(搜索,动态规划) Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来 ...

  2. 基础算法(搜索):NOIP 2015 斗地主

    Description 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3& ...

  3. [BZOJ 4325][NOIP 2015] 斗地主

    一道防AK好题 4325: NOIP2015 斗地主 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 820  Solved: 560[Submit] ...

  4. [NOIP 2015] 斗地主 landlord

    想起几个月之前的 noip2015-只会瞎搞-这道题骗了 30 分.T T 题目 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的 A 到 K 加上大小王的共 54 张牌 ...

  5. noip 2015 斗地主 大爆搜!!!

    反正肯定是大模拟 但是每一个可以出的牌都搜一定不是最优的 考虑最特殊的出牌方案:顺子(单,对,三) 每一种方案再加上暴力贪心打出剩下的牌的步数 #include<cstdio> #incl ...

  6. 洛谷 P2668 & P2540 [ noip 2015 ] 斗地主 —— 搜索+贪心

    题目:https://www.luogu.org/problemnew/show/P2668   https://www.luogu.org/problemnew/show/P2540 首先,如果没有 ...

  7. 4632 NOIP[2015] 运输计划

    4632 NOIP[2015] 运输计划  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 大师 Master 题解       题目描述 Description 公元 2044 ...

  8. NOIP 2015

    Prob.1 2015 神奇的幻方 模拟就好了.(这不是noip2017的初赛题么.)代码: #include<cstdio> #include<cstring> #inclu ...

  9. [NOIP 2015]运输计划-[树上差分+二分答案]-解题报告

    [NOIP 2015]运输计划 题面: A[NOIP2015 Day2]运输计划 时间限制 : 20000 MS 空间限制 : 262144 KB 问题描述 公元 2044 年,人类进入了宇宙纪元. ...

随机推荐

  1. 多目标跟踪(MOT)论文随笔-SIMPLE ONLINE AND REALTIME TRACKING (SORT)

    网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是使用 tracking by detection 方法进行多目标跟踪的文章,是后续de ...

  2. 软件工程网络15团队作业1——团队组队&展示

    Deadline: 2018-3-25 10:00PM,以提交至班级博客时间为准. 申请开通团队博客,并将团队博客地址发表在本次随笔的评论中 团队展示 根据5-6人的组队要求,每个队伍创建团队博客并发 ...

  3. Linux学习--线程控制

    关于线程控制,主要就是几个模块,我们一个一个消灭.消化: 一.线程创建: 1.先来看看在Linux环境下的线程创建函数: 分析:意思很明显: 1.函数名是 pthread_create  : 2.功能 ...

  4. iOS 播放音频的几种方法

    Phone OS 主要提供以下了几种播放音频的方法: System Sound Services AVAudioPlayer 类 Audio Queue Services OpenAL 1. Syst ...

  5. listview 与 button 焦点 在item添加下列属性

    android:descendantFocusability="blocksDescendants" http://zhaojianping.blog.51cto.com/7251 ...

  6. JAVA的循环控制与循环嵌套

    循环控制和循环嵌套 循环控制是除了循环条件之外,控制循环是否进行的一个机制,这给处理循环问题带来了灵活性.循环体内的语句块可以是顺序执行的语句,可以是分支结构的语句,也可以是循环语句,循环中含循环,就 ...

  7. aix 6.1系统怎么安装?这里有详细图文教程

    今年六月,我们公司出现了一次非常严重的数据丢失的事故.生产服务器崩溃导致所有的业务都陷于停滞,而且由于涉及到公司机密又无法贸然到数据恢复公司进行恢复,可是自己又无法解决.权衡利弊还是决定找一家有保密资 ...

  8. JAVA_SE基础——27.匿名对象

    黑马程序员入学blog... 匿名对象:没有引用类型变量指向的对象称作为匿名对象. 匿名对象要注意的事项:1. 我们一般不会给匿名对象赋予属性值,因为永远无法获取到.2. 两个匿名对象永远都不可能是同 ...

  9. Python内置函数(47)——vars

    英文文档: vars([object]) Return the __dict__ attribute for a module, class, instance, or any other objec ...

  10. python生成单词壁纸

    1.首先上结果: 其实就是一段简单的代码.加上英语单词表加上几张背景图生成许多类似的图片再设置成桌面背景,十分钟一换.有心的人闲的时候随手就能换换桌面背背单词.最不济也能混个脸熟. 3.上代码 #-* ...